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Abstract
In standard nonrelativistic quantum mechanics the expectation of the energy is
a conserved quantity. It is possible to extend the dynamical law associated
with the evolution of a quantum state consistently to include a nonlinear
stochastic component, while respecting the conservation law. According to the
dynamics thus obtained, referred to as the energy-based stochastic Schrödinger
equation, an arbitrary initial state collapses spontaneously to one of the energy
eigenstates, thus describing the phenomenon of quantum state reduction. In
this paper, two such models are investigated: one that achieves state reduction
in infinite time and the other in finite time. The properties of the associated
energy expectation process and the energy variance process are worked out in
detail. By use of a novel application of a nonlinear filtering method, closed-form
solutions—algebraic in character and involving no integration—are obtained of
both these models. In each case, the solution is expressed in terms of a random
variable representing the terminal energy of the system and an independent
noise process. With these solutions at hand it is possible to simulate explicitly
the dynamics of the quantum states of complicated physical systems.

PACS numbers: 03.65.Ta, 02.50.Ey, 02.50.Cw

1. Introduction

The idea that the standard Schrödinger equation of nonrelativistic quantum mechanics should
be extended to take the form of a stochastic differential equation on Hilbert space has been
investigated extensively as a mathematically viable approach to the measurement problem in
quantum mechanics. Indeed, there is now a substantial body of literature on the theory of
spontaneous state-vector reduction, and a number of different models have been proposed
that fall into this category. See, e.g., [3, 7, 24, 27] for overviews of this area and relevant
references.

This paper is concerned with the so-called energy-based stochastic extension of the
Schrödinger equation, which has the special status of being the simplest such extension that
is in principle applicable to any nonrelativistic quantum system. The physical set-up can
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be described briefly as follows. We consider an isolated quantum system for which the
Hamiltonian Ĥ has a discrete spectrum {Ei}i=1,2,...,N . We assume that initially the system is in
a pure state represented by the state vector |ψ0〉. The situation where the initial state is mixed
can also be considered (see, e.g., [4]), but for simplicity we confine the discussion to the case
of an initially pure state in this paper. For convenience, we set 〈ψ0|ψ0〉 = 1. For each value of
i we let |φi〉 denote the Lüders state associated with the energy level Ei . More specifically, let
us write �̂i for the projection operator onto the Hilbert subspace of states for which the energy
has the value Ei . We allow for the possibility that the energy may be degenerate. In that case,
we write ni for the number of linearly independent state vectors with energy Ei . Then the
Hamiltonian takes the form Ĥ = ∑

i Ei�̂i , and we define the Lüders states by setting

|φi〉 = �̂i |ψ0〉
〈ψ0|�̂i |ψ0〉1/2

. (1)

We note that Ĥ |φi〉 = Ei |φi〉 and 〈φi |φi〉 = 1. According to the von Neumann–Lüders
projection postulate [22, 30], if the system is initially in the pure state |ψ0〉 and if the outcome
of a measurement of the energy is the eigenvalue Ei , then after the measurement the state of
the system will be the Lüders state |φi〉.

It is an implicit feature of the projection postulate that quantum evolution progresses in
accordance with the unitary dynamics of the Schrödinger equation up to the moment when a
measurement is made, at which point the system jumps to a new state. The von Neumann–
Lüders rule asserting how the jump proceeds is essentially ad hoc in nature, despite being
plausible from a physical point of view insofar as the predicted outcome is concerned. Thus
although the projection postulate, in one form or another, remains an accepted part of the
everyday use of quantum theory in practical applications [19], one has to agree that such a
‘cookbook’ approach to the measurement problem is ultimately unsatisfactory; and this is why
over the last five decades many attempts have been made to modify the dynamics of standard
quantum mechanics in such a way that the ‘collapse’ process can be understood as governed by
an evolutionary law that operates on a universal basis, rather as does the Schrödinger equation
in ordinary quantum mechanics.

In order to ensure consistency with established facts, such a universal evolutionary law
needs to have the property that for some systems it proceeds in a way that for all practical
purposes reproduces the dynamics of the Schrödinger equation, whereas for other systems
the evolution progresses continuously to a terminal state that is consistent with the action of
the projection postulate. This ‘viability’ property is satisfied in particular by the standard
energy-based stochastic Schrödinger equation. In this model the Schrödinger equation, which
when written in differential form is given by

d|ψt 〉 = −iĤ |ψt 〉 dt, (2)

is generalized and elevated to the status of a nonlinear stochastic differential equation on
Hilbert space:

d|ψt 〉 = −iĤ |ψt 〉 dt − 1
8σ 2(Ĥ − Ht)

2|ψt 〉 dt + 1
2σ(Ĥ − Ht)|ψt 〉 dWt. (3)

Here, {|ψt 〉}0�t<∞ is the state-vector process, {Wt }0�t<∞ is the Wiener process and {Ht }0�t<∞
is the energy expectation process, defined by

Ht = 〈ψt |Ĥ |ψt 〉
〈ψt |ψt 〉 . (4)

The coupling constant σ appearing in (3), which has the units σ ∼ [energy]−1 [time]−1/2,
determines the characteristic timescale τR associated with the rate of collapse of the
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wavefunction induced by (3). This timescale is given typically by an expression of the
form τR = 1/σ 2V0, where V0 is the initial value of the process {Vt }0�t<∞ for the energy
variance, which at time t is given by the following expression:

Vt = 〈ψt |(Ĥ − Ht)
2|ψt 〉

〈ψt |ψt 〉 . (5)

One of the attractive features of the stochastic differential equation (3) is that it provides a
more or less completely tractable model for state-vector reduction in nonrelativistic quantum
mechanics. Nevertheless, despite the fact that the mathematical properties and physical
consequences of (3) and various related processes have been studied extensively in the literature
[1, 4, 5, 10, 15–18, 26], it has only been recently that a general solution of (3) has been obtained
in terms of an appropriate set of freely specifiable random data [11, 12]. The aim of this paper
is to present a complete treatment of the method of solution of the dynamical equation (3).
The results are of interest both for the new range of numerical and computational techniques
they open up, as well as for the new methods for model building they provide.

The paper is organized as follows. In section 2, we review some basic notions of
stochastic analysis, including the concepts of filtrations, conditional expectations, martingales,
supermartingales and potentials. The material introduced in this section will be used
throughout the paper. In sections 3–5, we establish various properties of the energy expectation
process (4) and the energy variance process (5), showing that the variance process has the
‘potential’ property; that is to say, its expectation goes to zero asymptotically. This allows us
to give a precise sense to the notion of state reduction. In section 6, we then determine the
circumstances under which the state vector reduces to one of the eigenstates of an observable
that is compatible with the Hamiltonian.

In section 7, we address the problem of the origin of the dynamical equation (3). Starting
from a general stochastic equation for a state vector driven by a single Brownian motion, we
determine what additional physical assumptions and other simplifying features are required in
order to obtain (3). We also show, under a suitable ‘universality’ assumption regarding energy
conservation, that reduction to lower energy uncertainty is a generic feature of the stochastic
Schrödinger equation.

The projection operators for the energy eigenstates constitute a special set of observables
that commute with the Hamiltonian. The expectation value, with respect to the state |ψt 〉,
of such a projection operator determines the random process for the associated conditional
transition probability to that eigenstate. The properties of this conditional probability process
are studied in section 8. In section 9, we digress briefly to investigate the dynamics of
the Shannon entropy associated with the system of transition probabilities and show that
the Shannon entropy has the property that its expectation goes to zero asymptotically. This
is contrasted with the behaviour of the von Neumann entropy. We also derive an equality
that relates the entropic measure and the variance-based measure of energy dispersion. In
section 10, we study a certain linear stochastic differential equation for the state vector, which
we call the ancillary equation, and verify that a state vector satisfying the ancillary equation,
once suitably normalized, can be used as a step to obtaining the solution of the nonlinear
equation (3). We also clarify the relation of our results to earlier work on solutions of (3) and
related dynamical equations, explaining why previously established integral representations
for the state vector satisfying the stochastic equation should not generally be regarded as
explicit solutions in the sense that we use the term here.

Then in sections 11 and 12, we derive a bona fide explicit solution to (3), making
use of a nonlinear filtering method. The solution thus obtained is expressed in terms of a
simple algebraic function of a standard Brownian motion and an independent random variable
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representing the terminal value of the energy. By use of this result, it is possible to simulate
solutions that represent the evolution of rather complicated quantum systems. In section 13,
we introduce a technique that allows one to verify that the solution obtained in section 11 does
indeed give rise to the reduction of the state vector. In section 14, we investigate properties
of the asymptotic random variable corresponding to the terminal value of the energy. While
in the nonlinear filtering method used to solve (3) we introduce a noise term, in section 15
we derive the external noise term from the underlying processes specified in (3). This result
justifies the use of the filtering methodology we have employed here.

We then turn to solve the problem of constructing a collapse model that achieves state
reduction in finite time. That is, although the standard energy-based collapse model (3)
achieves a strict collapse in infinite time, with a minimal modification of the dynamical
equation (3) it is possible to formulate a finite-time collapse model. In section 16, we introduce
such a model. Using the methodology of section 11, we derive an analytical expression that we
conjecture to give the energy expectation process. The validity of this conjecture is established
in section 17. In section 18, we derive the external noise term arising in the finite-time collapse
model that is used in section 17 to obtain the solution. In section 19, we demonstrate the
fact that the standard energy-based model (3) and the finite-time collapse model introduced in
(198) are related by a nonlinear time-change. That is, if we take the model (3) and replace the
time variable t by a ‘clock’ variable defined by τ(t) = tT /(T − t), where T is a finite positive
constant, then in a physical world measured by the variable t, the collapse for the new system
takes place in finite time interval T, since the clock variable τ(t) runs from 0 to ∞ as t runs
from 0 to T.

As a closing remark, in section 20, the role of the asymptotic value of the energy, which
has the interpretation of a hidden variable in the stochastic framework, is discussed. We
also speculate on whether the energy-based reduction models analysed here suffice as such
to form a basis for the general description of random phenomena in nonrelativistic quantum
mechanics.

2. Stochastic essentials

We begin with an overview of the probabilistic framework implicit in the specification
of the energy-based stochastic Schrödinger equation. The concepts introduced in this
section are standard in the literature of stochastic analysis, as is also the notation (see, e.g.,
[20, 21, 28, 29, 32, 33]). The dynamics of the state vector |ψt 〉 are defined on a probability
space (�,F, P) with filtration {Ft }0�t<∞, with respect to which the process {Wt }0�t<∞ is a
standard Brownian motion. Here, � is the sample space on which F is a σ -algebra of open
sets upon which the probability measure P is defined. Each element ω ∈ � represents a
‘possible outcome of chance’. Each element A ∈ F is an ‘event’. The measure P assigns a
probability P(A) to each event A.

Now we give the relevant definitions in more detail, since these are of interest. Let
� be a set, and let F be a collection of subsets of �. For any subset A ⊂ � we let
Ac = {ω ∈ �|ω /∈ A} denote its complement. Then F is called an algebra of subsets of � if
(a) � ∈ F , (b) A ∈ F implies that Ac ∈ F and (c) A,B ∈ F implies A ∪ B ∈ F . It follows
from these axioms that ∅ ∈ F and that A,B ∈ F implies A ∩ B ∈ F .

The algebraic operations on the elements ofF are as follows. The product of two elements
A,B ∈ F is defined by A · B = A ∩ B, and the sum of two elements A,B ∈ F is defined by
A + B = (A ∪ B) ∩ (A ∩ B)c. It follows that the product and sum operations are symmetric
and associative and that (A + B) · C = A · C + B · C for any A,B,C ∈ F . The underlying
field of the algebra F is the minimal subalgebra {�,∅}, which when endowed with the same
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product and sum operations as those defined above satisfies the rules of binary arithmetic:{∅ · ∅ = ∅, ∅ · � = ∅, � · � = �,

∅ + ∅ = ∅, ∅ + � = �, � + � = ∅.
(6)

If F is an algebra of subsets of � then we say that F is a σ -algebra if it has the property
that whenever {An}n∈N ∈ F then ∪nAn ∈ F . That is to say, the union of any countable
sequence of elements of F is also an element of F . It follows that whenever {An}n∈N ∈ F we
have ∩nAn ∈ F , since ∩nAn = (∪nA

c
n

)c
.

We comment briefly on the distinction between a σ -algebra and a topology, since the
latter is more familiar to physicists than the former. In a topology we axiomatize the notion
of an open set and require that the union of any collection of open sets is open and that the
intersection of any finite collection of open sets is open. In a σ -algebra we axiomatize the
notion of a measurable set and require that the union of any countable sequence of measurable
sets is measurable and that the intersection of any countable sequence of measurable sets is
measurable.

If F is a σ -algebra of subsets of a set �, then we call the pair (�,F) a measurable space.
If (�,F) is a measurable space, then a probability measure on (�,F) is a map P : F → [0, 1]
satisfying: (a) P(∅) = 0, (b) P(�) = 1 and (c) if {An}n∈N is a countable sequence of disjoint
elements of F with union A = ∪nAn, then P(A) = ∑

n P(An). A triple (�,F, P) is called a
probability space.

The introduction of the concept of a filtration on a probability space allows one to
formalize the notion that the consequences of the outcome of chance are not necessarily
revealed at once, but rather may emerge sequentially as time progresses. More specifically, a
filtration of F is a collection {Ft } of σ -subalgebras of F such that Fs ⊂ Ft for all s and t such
that 0 � s � t < ∞.

If an event A ∈ F is such that A ∈ Ft for some given value of t, then we interpret this
to mean that at time t one can say whether ω ∈ A or not. To put this another way, in a
filtered probability space each ω ∈ � corresponds to a possible ‘future history’. Each element
A ∈ Ft then represents a simple yes/no question, the answer to which, for any particular
future history, will be known for certain by time t. For that reason, the nesting Fs ⊂ Ft for
s � t gives rise to a notion of causality.

A real-valued function X : � �→ R is said to be measurable with respect to the σ -algebra
F if for each number x ∈ R the set {ω ∈ � : 1x(ω) = 1} is an element of F . Here, 1x(ω)

is the indicator function on � for the set consisting of all ω such that X(ω) � x. Thus,
1x : � �→ {0, 1} and 1x(ω) = 1{X(ω)�x}. If X is F-measurable in the sense just discussed, we
say that X is a real-valued random variable on (�,F, P). The probability distribution function
FX(x) = P(X � x) is then defined by use of the Lebesgue integral:

P(X � x) =
∫

�

1x(ω) dP(ω). (7)

More generally, we also consider maps of the form X : � �→ � where (�,F, P) is a
probability space and (�,G) is a measurable space. For example, � could be Rn, Cn, a Hilbert
space or a manifold. In that case we say the random variable X takes values in � and G can be
typically taken to be the so-called Borel σ -algebra generated by the open sets of �. Then for
any element G ∈ G, we define

P(X ∈ G) =
∫

�

1{X(ω)∈G} dP(ω). (8)

A parametric family {Xt }0�t<∞ of random variables on (�,F, P) is called a random
process. If a random process {Xt } on a probability space (�,F, P) with filtration {Ft } has
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the property that for each value of t the random variable Xt is Ft -measurable, then we say that
{Xt } is adapted to the filtration {Ft }.

If X is a nonnegative real random variable, its P-expectation (i.e., its expectation with
respect to the measure P) is defined by the integral

E[X] =
∫

�

X(ω) dP(ω), (9)

which may take the value +∞. More generally, when X is not necessarily nonnegative, the
expectation is defined only when one of the expressions E[X+] or E[X−] is finite, where
X+ = max(X, 0) and X− = −min(X, 0), in which case E[X] = E[X+] − E[X−]. A random
variable such that E[|X|] = E[X+] + E[X−] is finite is said to be integrable.

Now we turn to the definition of conditional expectation. Given a random variable X on
(�,F, P) for which E[X] exists, the conditional expectation E[X|A] of X with respect to the
σ -subalgebra A ⊂ F is defined to be any A-measurable random variable Y for which E[Y ] is
defined, such that for any element A ∈ A we have∫

�

1A(ω)X(ω) dP(ω) =
∫

�

1A(ω)Y (ω) dP(ω). (10)

If such a random variable exists, then it is unique up to equivalence modulo differences on sets
of P-measure zero. Thus even if E[X|A] is not quite unique we refer to it as the conditional
expectation of X with respect to A. This definition, which at first glance appears rather
formal and indirect, is nevertheless one of the cornerstones of modern probability theory and
is indispensable. We remark that a sufficient condition for E[X|A] to exist is that X should be
integrable.

The following properties of the conditional expectation are often useful in calculations:
(i) the law of total probability E[E[X|A]] = E[X] and (ii) the tower property, which says that
if A ⊂ B ⊂ F then E[E[X|B]|A] = E[X|A]. The law of total probability is a special case of
the tower property.

The conditional expectation operation allows us to introduce the concept of a martingale,
the stochastic analogue of a conserved quantity. For this purpose, we need the operation
of conditioning with respect to a σ -subalgebra Ft belonging to a filtration {Ft }0�t<∞.
Intuitively, conditioning with respect to Ft means conditioning with respect to the information
that will become available up to time t. For convenience, we often use the abbreviation
Et [X] = E[X|Ft ] when the choice of filtration can be taken as understood. There are
situations, however, where more than one filtration may arise in the context of a given problem,
in which case the more explicit notation is useful. The conditional expectation Et [X] satisfies
E[Et [X]] = E[X] and Es[Et [X]] = Es[X] for s � t . We note that if X is Ft -measurable, then
Et [X] = X.

A real-valued process {Xt } is said to be an {Ft }-martingale on the probability space
(�,F, P) if E[|Xt |] < ∞ for all 0 � t < ∞ and Es[Xt ] = Xs for all 0 � s � t < ∞.
In other words, {Xt } is an {Ft }-martingale if it is integrable and if for t � s the conditional
expectation of Xt , given Fs , is the value Xs of the process at time s. A process {Xt } is an
{Ft }-supermartingale on (�,F, P) if E[|Xt |] < ∞ for all t � 0, and Es[Xt ] � Xs for all
0 � s � t < ∞. Intuitively, a supermartingale is a process that tends on average, at any time,
to be nonincreasing. A martingale is a fortiori a supermartingale. The martingale convergence
theorem (see, e.g., [28], theorem 10) states that if {Xt } is a supermartingale that satisfies

sup
0�t<∞

E[|Xt |] < ∞, (11)

then there exists a random variable Y such that limt→∞ Xt = Y almost surely (i.e., with
probability one) and that E[|Y |] < ∞. It follows that a positive supermartingale necessarily
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converges to a limit as t goes to infinity. A positive supermartingale {Xt } with the property
that limt→∞ E[Xt ] = 0 is called a potential [23].

We now review some basic formulae arising in the theory of Ito processes. Let (�,F, P)

be a probability space with filtration {Ft }0�t<∞, and let {Wt }0�t<∞ be a standard Wiener
process adapted to {Ft }. Here by a standard Wiener process (or Brownian motion) we mean a
continuous process {Wt } with the properties that (i) {Wt } has independent increments, and that
(ii) Wt − Ws for 0 � s < t < ∞ is a Gaussian random variable with mean zero and variance
t − s.

Let {at }0�t<∞ and {bt }0�t<∞ be {Ft }-adapted processes such that for any t ∈ [0,∞) we
have ∫ t

0
|as | ds +

∫ t

0
b2

s ds < ∞ (12)

almost surely. Then letting X0 an F0-measurable initial condition, the random variable Xt

defined by the stochastic integral

Xt = X0 +
∫ t

0
as ds +

∫ t

0
bs dWs (13)

is well defined and Ft -measurable for all t, and we call {Xt }0�t<∞ an Ito process (see, e.g.,
[28, 29] for the general definition of the stochastic integral). In this case, we say that
{Xt } is a real-valued Ito process driven by the one-dimensional Wiener process {Wt }. It is
straightforward to generalize (13) to cases for which both {Xt } and {Wt } are multidimensional.

One useful tool of which we make repeated use is Ito’s lemma. Suppose {Xt } is given by
(13) and consider the process {ft }0�t<∞ defined by ft = f (Xt , t) where f ∈ C2,1(R × R+).
Let prime and dot denote differentiation with respect to the first and second arguments of
f (x, t), respectively. Then Ito’s lemma states that

f (Xt , t) = f (X0, 0) +
∫ t

0
ḟ (Xs, s) ds +

∫ t

0
asf

′(Xs, s) ds

+
1

2

∫ t

0
b2

s f
′′(Xs, s) ds +

∫ t

0
bsf

′(Xs, s) dWs. (14)

It is often convenient to express (13) and (14) in differential form: thus we write

dXt = at dt + bt dWt (15)

for the ‘dynamics’ of {Xt }, and

df (Xt , t) = (
ḟ (Xt , t) + atf

′(Xt , t) + 1
2b2

t f
′′(Xt , t)

)
dt + btf

′(Xt , t) dWt (16)

for the dynamics of {ft } implied by Ito’s lemma. As in ordinary calculus, the differential
equations of stochastic calculus are essentially formal in character and always derive their
meaning from associated integral equations. Thus, (15) and (16) refer back to (13) and
(14). Nevertheless, as in ordinary calculus, the manipulation of infinitesimal quantities in
stochastic calculus can be very powerful as a mathematical technique and can be intuitively
very suggestive as well. For example, the so-called Ito product rule

d(XtYt ) = Yt dXt + Xt dYt + dXt dYt (17)

is shorthand for the fact that if {Xt } is given by (13) and {Yt } is given analogously, but with
{at } and {bt } replaced by {pt } and {qt }, then

XtYt = X0Y0 +
∫ t

0
(Ysas + Xsps + bsqs) ds +

∫ t

0
(Ysbs + Xsqs) dWs. (18)
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Now consider an Ito process {Mt }0�t<∞ of the form

Mt = M0 +
∫ t

0
bs dWs. (19)

Then a sufficient condition for {Mt } to be a martingale is that M0 should be integrable, and
that

E

[∫ t

0
b2

s ds

]
< ∞ (20)

for all t ∈ [0,∞). In that case {Mt } is called a square-integrable martingale, and we have the
identity

E[(Mt − M0)
2] = E

[∫ t

0
b2

s ds

]
. (21)

More generally, we also have the following relation, valid for t � s � 0, which we call the
conditional Wiener–Ito isometry:

Es[(Mt − Ms)
2] = Es

[∫ t

s

b2
u du

]
. (22)

In certain situations we are presented with an equation of the form (13), and we are told
the distribution of X0 and that the processes {at } and {bt } are of the form at = a(Xt , t) and
bt = b(Xt , t), where a(x, t) and b(x, t) are prescribed functions. In that case we have a
stochastic differential equation of the form

dXt = a(Xt , t) dt + b(Xt , t) dWt, (23)

with initial condition X0. By a ‘solution’ of the stochastic differential equation (23) we mean
the specification of the probability space (�,F, P) with filtration {Ft }, together with an {Ft }-
adapted Brownian motion and an {Ft }-adapted Ito process {Xt } satisfying (23) along with the
given initial condition.

The extension of these definitions to situations where {Xt } and {Wt } are multidimensional
is straightforward. It is also appropriate in some circumstances to consider processes defined
over a finite time horizon t ∈ [0, T ], T < ∞, for which straightforward modifications of the
relevant definitions can also be formulated.

3. Dynamics of the energy process

Now we are in a position to analyse the dynamics of the energy-based stochastic Schrödinger
equation (3) in more detail. We shall make the following assumptions concerning the dynamics
of the state vector:

(a) The state-vector process {|ψt 〉}0�t<∞ takes values in a finite-dimensional complex Hilbert
space and is defined on a probability space (�,F, P) with filtration {Ft }0�t<∞.

(b) {|ψt 〉} is adapted to {Ft }.
(c) {|ψt 〉} satisfies the stochastic differential equation (3) with the given initial condition |ψ0〉.

Under these assumptions it is a straightforward exercise in Ito calculus (see, for example,
[4]) to show that 〈ψt |ψt 〉 = 1 for all t ∈ [0,∞). One is then led to the following basic result.

Proposition 1. The Hamiltonian process {Ht } is an {Ft }-martingale, and the variance
process {Vt } is an {Ft }-supermartingale.

Proof. We need to show that {Ht } satisfies

Es[Ht ] = Hs, (24)
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and that {Vt } satisfies

Es[Vt ] � Vs, (25)

where Et [·] denotes conditional expectation with respect to the σ -algebra Ft . The validity of
these properties can be established as follows. By an application of Ito’s lemma to (4) and (5),
we infer that

dHt = σVt dWt, (26)

and that

dVt = −σ 2V 2
t dt + σκt dWt. (27)

The process {κt } defined here by

κt = 〈ψt |(Ĥ − Ht)
3|ψt 〉

〈ψt |ψt 〉 (28)

measures the skewness of the energy distribution. Integrating (26) and (27) we deduce that

Ht = H0 + σ

∫ t

0
Vu dWu, (29)

and that

Vt = V0 − σ 2
∫ t

0
V 2

u du + σ

∫ t

0
κu dWu. (30)

Then on account of the relation

Es

[∫ t

0
bu dWu

]
=
∫ s

0
bu dWu (31)

that holds for the stochastic integral of any {Ft }-adapted process {bt } satisfying

E

[∫ t

0
b2

u du

]
< ∞, (32)

we deduce the martingale condition (24) from (29). This follows from the fact that {Vt } is
bounded. Similarly, it follows as a consequence of (30), and the fact that {κt } is bounded, that

Es[Vt ] = Vs − σ 2Es

[∫ t

s

V 2
u du

]
, (33)

which then implies the supermartingale condition (25). �

4. Convergence of the energy variance

In the case of the Schrödinger equation with a time-independent Hamiltonian, the energy
process defined by (4) is constant. This is usually interpreted as the quantum mechanical
expression of an energy conservation principle. The martingale relation (24) arising in the
case of the energy-based stochastic Schrödinger equation can be viewed as a refinement of
this principle.

The supermartingale property (25) satisfied by the variance process is the essence of
what is meant by a reduction process. In the case of the Schrödinger equation with a time-
independent Hamiltonian, the variance of the energy is a constant of the motion. In other
words, not only is the expectation value of the energy fixed, so is the spread. On the other
hand, the spread of the energy is reduced in the case of the stochastic dynamics of (3). In fact,
the following result follows as a consequence of equation (30).
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Proposition 2. The asymptotic behaviour of the expectation of {Vt } is given by

lim
t→∞ E[Vt ] = 0. (34)

Therefore, the variance process is a potential.

Proof. First we note that if X and Y are integrable random variables, and if X � Y almost
surely, then E[X] � E[Y ]. It follows thus from the supermartingale condition (25) by use of
the tower property that if t � u then E[Vt ] � E[Vu]. We note that

E

[∫ t

0
bu dWu

]
= 0 (35)

for any {Ft }-adapted process {bt } satisfying (32). Since the energy skewness process {κt } is
bounded, it therefore follows from (30) that

E[Vt ] = V0 − σ 2E

[∫ t

0
V 2

u du

]

= V0 − σ 2
∫ t

0
E
[
V 2

u

]
du. (36)

Here, we have used Fubini’s theorem to interchange the expectation and the integration. As a
consequence, we have the relation

E[Vt ] � V0 − σ 2
∫ t

0
(E[Vu])2 du, (37)

since E
[
V 2

t

]
� (E[Vt ])2, which follows from Jensen’s inequality. Now writing

v = lim
t→∞ E[Vt ], (38)

let us suppose that v = 0. Because E[Vt ] is a nonnegative, nonincreasing function of time,
we have v � E[Vt ]. It follows from (37) that E[Vt ] � V0 − σ 2v2t , which, if v = 0, implies
that E[Vt ] vanishes at t = V0/σ

2v2. However, this is incompatible with the assumption that
v = 0; it follows that v = 0 and thus that {Vt } is a potential. �

The same conclusion can be reached by a slightly different line of argument. Starting with
(37), we use the fact that E[Vt ] � E[Vu] for t � u to infer that E[Vt ] � V0 − σ 2t (E[Vt ])2,
which implies, on account of the positivity of Et [Vt ], that

E[Vt ] �
√

V0

σ 2t
, (39)

and hence the claim of the proposition.
Since Vt is nonnegative, proposition 2 implies that limt→∞ Vt = 0 almost surely, i.e. that

reduction to a state of vanishing energy uncertainty occurs with probability 1.

5. Asymptotic properties of the energy

From the martingale convergence theorem for square-integrable martingales (see section 2), it
follows that there exists a random variable H∞ defined by

H∞ = lim
t→∞ Ht, (40)

which represents the terminal value of the energy once the reduction is complete. Thus, if we
write

H∞ = H0 + σ

∫ ∞

0
Vu dWu, (41)
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it follows as a consequence of (31) that

Ht = Et [H∞]. (42)

Thus, H∞ has the property that it closes the martingale {Ht }. It then follows from (42)
that the random variable Ht has the interpretation of being the Ft -conditional expectation
of the terminal value of the energy. In particular, we deduce that H0 = E[H∞], which shows
that the expectation value of the Hamiltonian in the initial state agrees with the expectation of
the terminal value of the energy. This result can be viewed as a justification for the conventional
interpretation of the expectation value of the Hamiltonian.

A similar result can be established in the case of the variance, which we now proceed to
derive. In particular, writing (33) in the form

Et [VT ] = Vt − σ 2Et

[∫ T

t

V 2
u du

]
, (43)

it follows that

lim
T →∞

Et [VT ] = Vt − σ 2 lim
T →∞

Et

[∫ T

t

V 2
u du

]
. (44)

Since the variance of the energy is bounded, we can invoke the conditional form of the bounded
convergence theorem to interchange the order of the limit and the expectation on the left-hand
side of this equation. It follows from the fact that limT →∞ VT = 0 almost surely that

Vt = σ 2 lim
T →∞

Et

[∫ T

t

V 2
u du

]
. (45)

Now we interchange the order of the limit and the conditional expectation on the right-hand
side of this equation by using the conditional form of the monotone convergence theorem and
we deduce that

Vt = σ 2Et

[∫ ∞

t

V 2
u du

]
. (46)

On the other hand, it follows as a consequence of (29) and (41) that

H∞ − Ht = σ

∫ ∞

t

Vu dWu, (47)

and therefore, by use of the conditional Wiener–Ito isometry (22), that

Et [(H∞ − Ht)
2] = σ 2Et

[(∫ ∞

t

Vu dWu

)2
]

= σ 2Et

[∫ ∞

t

V 2
u du

]
. (48)

Equating the results (46) and (48) we obtain the fundamental relation:

Proposition 3. Let {|ψt 〉} satisfy (3) and write H∞ for the asymptotic value of the energy
martingale {Ht }. Then the squared uncertainty of the energy in the state |ψt 〉 is given by

Vt = Et [(H∞ − Et [H∞])2]. (49)

This relation shows that the random variable Vt has the interpretation of being the
conditional variance of the terminal value of the energy. In particular, proposition 3
demonstrates that the initial squared energy uncertainty V0 agrees with the variance of the
terminal value of the energy. This fact can be viewed as a justification for the conventional
interpretation of the energy uncertainty.
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6. Asymptotic properties of observables that are compatible with the energy

We now proceed to derive a rather more general result that includes proposition 3 as a special
case. Let us suppose Ĝ is any observable that commutes with Ĥ and write Gt and V G

t for
the mean and variance of Ĝ with respect to the random state |ψt 〉. Thus Gt = 〈Ĝ〉t and
V G

t = 〈(Ĝ − Gt)
2〉t , and by use of Ito’s lemma we deduce as a consequence of (3) that

dGt = σγt dWt, (50)

and that

dV G
t = −σ 2γ 2

t dt + σδt dWt, (51)

where

γt = 〈(Ĝ − Gt)(Ĥ − Ht)〉t (52)

and

δt = 〈(Ĝ − Gt)
2(Ĥ − Ht)〉t . (53)

Now we shall show that {Gt } is a martingale and investigate the nature of the conditional
variance representation admitted by

{
V G

t

}
. It follows from (50) and (51) that

Gt = G0 + σ

∫ t

0
γu dWu (54)

and that

V G
t = V G

0 − σ 2
∫ t

0
γ 2

u du + σ

∫ t

0
δu dWu. (55)

Thus, since {γt } and {δt } are bounded, we see that {Gt } is an {Ft }-martingale and that
{
V G

t

}
is an {Ft }-supermartingale. Therefore, by the martingale convergence theorem (see section 2)
there exist random variables G∞ and V G

∞ such that

G∞ = G0 + σ

∫ ∞

0
γu dWu (56)

and

V G
∞ = V G

0 − σ 2
∫ ∞

0
γ 2

u du + σ

∫ ∞

0
δu dWu. (57)

Taking the conditional expectation of each side of this equation with respect to Ft , we deduce
that

Et

[
V G

∞
] = V G

0 − σ 2Et

[∫ ∞

0
γ 2

u du

]
+ σ

∫ t

0
δu dWu. (58)

Solving (58) for V G
0 and substituting the result into (55) we see that

V G
t = Et

[
V G

∞
]

+ σ 2Et

[∫ ∞

t

γ 2
u du

]

= Et

[
V G

∞
]

+ σ 2Et

[(∫ ∞

t

γu dWu

)2
]

, (59)

by use of the conditional Wiener–Ito isometry. Making use of the fact that

G∞ = Gt + σ

∫ ∞

t

γu dWu, (60)
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which follows from (54) and (56), we obtain the following fundamental relations governing
the dynamics of {Gt } and

{
V G

t

}
:

Gt = Et [G∞] (61)

and

V G
t = Et

[
V G

∞
]

+ Et [(G∞ − Gt)
2]. (62)

Equation (61) shows that the martingale {Gt } closes, and hence the relation G0 = E[G∞]
allows us to identify the initial expectation value G0 with the expectation of the result obtained
for the random variable G∞. Equation (62) then has a natural interpretation as a conditional
variance relation. If the Hamiltonian has a nondegenerate spectrum, then the terminal state
is necessarily both an eigenstate of Ĥ and Ĝ, and V G

∞ vanishes. On the other hand, if Ĥ has
a degenerate spectrum, then the terminal value of Ĥ will not necessarily be an eigenvalue of
Ĝ. In that case, the random variable V G

∞ is nonvanishing and takes the value

V G
∞ = 〈φi |Ĝ2|φi〉 − 〈φi |Ĝ|φi〉2 (63)

with probability

πi = |〈ψ0|φi〉|2, (64)

where |φi〉 is the normalized Lüders state3 corresponding to the eigenvalue Ei of Ĥ , given the
initial state |ψ0〉, as defined in section 1. We recall that when Ĥ has a degenerate spectrum,
the collapse of the wavefunction induced by (3) necessarily leads to one of the Lüders states,
as shown, e.g., in [4].

It is interesting to observe that, while the variance process {Vt } associated with the
Hamiltonian is a potential, the variance

{
V G

t

}
for Ĝ, although a supermartingale, is not

necessarily a potential unless Ĥ has a nondegenerate spectrum. Physically this is because a
reduction of the energy induces a complete reduction of a compatible observable only if the
energy spectrum is nondegenerate.

7. On the generality of the dynamical equation

Before embarking on an account of our approach to the solution of the stochastic differential
equation (3), it will be useful to set this stochastic equation in the context of a more general
family of possible dynamical laws for the state-vector process {|ψt 〉}. The idea then will be
to see what specific additional physical assumptions are needed to imply that the dynamics
should take the form (3).

We shall assume as before that {|ψt 〉}0�t<∞ is a continuous stochastic process defined on
a fixed probability space (�,F, P) with filtration {Ft } taking values in a finite-dimensional
complex Hilbert space. For the dynamics of {|ψt 〉}, we write

d|ψt 〉 = µ̂t |ψt 〉 dt + σ̂t |ψt 〉 dWt, (65)

3 See [4, 19, 22]. We remark, incidentally, that the Lüders state has the following geometrical interpretation. In the
case of a Hilbert space of dimension n + 1, the corresponding space of pure states is the complex projective space
CPn. If the Hilbert subspace of state vectors of some given energy Ei has dimension k + 1, then the corresponding
space of pure states of that energy is a projective hyperplane Dk of dimension k. The complex conjugate of Dk is a
hyperplane D̄n−k−1 of dimension n − k − 1. Clearly Dk and D̄n−k−1 do not intersect. The initial state vector |ψ0〉
corresponds to a point ψ0 ∈ CPn. Therefore, the join of ψ0 and Dk is a hyperplane Qk+1 of dimension k + 1 which
intersects the hyperplane D̄n−k−1 at a single point ψ̄ i . Now take the join of ψ0 and ψ̄ i . The resulting line clearly
lies in hyperplane Qk+1 and thus hits the hyperplane Dk at a single point, and this point is the Lüders state φi . The
interpretation of ψ̄ i , on the other hand, is as follows: if a measurement is made to determine simply whether the
energy is Ei or not, then in the event of a negative result the new state of the system will be the point ψ̄ i .
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where {Wt } is an {Ft }-Brownian motion. We assume that {|ψt 〉} is adapted to {Ft } and that
so are the operator-valued processes {µ̂t } and {σ̂t }. We call {µ̂t } and {σ̂t } the operator-valued
drift and volatility of {|ψt 〉}.

Our first requirement will be that {µ̂t } and {σ̂t } must be chosen such that the normalization
of |ψt 〉 is preserved for all t. We note that the conjugate of (65) is

d〈ψt | = 〈ψt |µ̂†
t dt + 〈ψt |σ̂ †

t dWt. (66)

By virtue of the Ito product rule we have

d〈ψt |ψt 〉 = (d〈ψt |)|ψt 〉 + 〈ψt |(d|ψt 〉) + (d〈ψt |)(d|ψt 〉), (67)

and thus by use of (65) and (66) we obtain

d〈ψt |ψt 〉
〈ψt |ψt 〉 = (〈

µ̂
†
t + µ̂t

〉
t

+
〈
σ̂
†
t σ̂t

〉
t

)
dt +

〈
σ̂
†
t + σ̂t

〉
t
dWt, (68)

where for brevity we use the convenient notation

〈X̂t 〉t = 〈ψt |X̂t |ψt 〉
〈ψt |ψt 〉 (69)

for the expectation value at time t of any operator process {X̂t }. Therefore, the normalization
condition for |ψt 〉 is ensured if the operators µ̂

†
t + µ̂t + σ̂

†
t σ̂t and σ̂

†
t + σ̂t have vanishing

expectation values with respect to |ψt 〉. It is a straightforward exercise to verify that the most
general expressions for the drift µ̂ and the volatility σ̂ satisfying these conditions are

µ̂t = −iĤ t − 1
2 σ̂

†
t σ̂t + Ĵ t − 〈Ĵ t 〉t , (70)

and

σ̂t = iK̂t + L̂t − 〈L̂t 〉t , (71)

where {Ĥ t }, {Ĵ t }, {K̂t } and {L̂t } are arbitrary Hermitian operator-valued processes.
It should be evident that the process (3) is obtained if (a) we let K̂t and Ĵ t vanish for all

t, (b) we let L̂t = 1
2σĤ t for all t, where σ is a parameter, and (c) we assume that {Ĥ t } is

time independent. Let us investigate therefore the nature of the additional physical conditions
that we need to impose on the general norm-preserving dynamics in order to ensure that the
energy-based model is obtained in accordance with these specifications.

The general norm-preserving model contains the four operator-valued processes
{Ĥ t }, {Ĵ t }, {K̂t } and {L̂t }. One can think of these operators as representing properties of
the physical environment in which the quantum system exists. In general, the environment
is changing in a random time-dependent manner. We shall make the simplifying assumption
of a ‘stationary’ environment so that {Ĥ t }, {Ĵ t }, {K̂t } and {L̂t } are now replaced by time-
independent operators Ĥ , Ĵ , K̂ and L̂. Thus, our first assumption is that the environment is
in a state of stationary equilibrium.

We give the operator Ĥ the usual interpretation as representing the total energy of the
system. This is justified by the fact that if K̂, Ĵ and L̂ are set to zero then the conventional
Schrödinger equation is recovered. Next we make an assumption that might be called the
‘universality of the Hamiltonian’. This is based on the observation that the Hamiltonian is the
only observable that must exist as an element of the dynamics of a quantum system. If our
dynamical law is to be universally applicable to any quantum system, then the only observable
that can enter the discussion is Ĥ , and thus we must require that K̂, Ĵ and L̂ are all functions
of the Hamiltonian. Thus, in effect, we are asking that the system should act as its own
environment. It is with this assumption that an element of nonlinearity enters the dynamics.

Our final physical requirement is that energy should be conserved in some suitable sense.
Now in ordinary quantum mechanics with a time-independent Hamiltonian, the expectation
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value of the Hamiltonian is a constant of the motion. This relation is usually interpreted by
physicists with a certain looseness of language to mean ‘conservation of energy’, but what it
means really is conservation of the expectation value of the energy. In a situation where the state
is undergoing random changes, the expectation value of the energy will also change randomly.
We can, nonetheless, impose a slightly weaker condition of conservation appropriate to this
situation by requiring that the process {Ht }0�t<∞ should satisfy the martingale relation

E[Ht |Fs] = Hs (72)

for s � t . This relation states that the conditional expectation of the expectation value of the
energy at time t, with respect to the σ -algebra Fs , is the expectation value of the energy at
time s. This is the sense in which the martingale relation provides a characterization of the
principle of energy conservation.

It follows therefore that we need to analyse the process {Ht }, defined as in (4), and
require that its drift should vanish. This will ensure that {Ht } is a martingale and that energy
is conserved. In fact, we shall impose a somewhat stronger condition. Let f (x) denote a
bounded function and write f̂ = f (Ĥ ). We shall require that for any such operator f̂ the
corresponding expectation-value process {ft } defined by

ft = 〈ψt |f (Ĥ )|ψt 〉
〈ψt |ψt 〉 (73)

should be an {Ft }-martingale. This corresponds to the requirement that not only is the energy
conserved in the sense discussed above but so is the observable associated with any function of
the energy. With this condition in place we have a suitably general and robust representation
of the principle of energy conservation. If we take the stochastic differential of ft in (73), then
by use of the Ito calculus we find that

dft = 2(〈Ĵ f̂ 〉t − 〈Ĵ 〉t 〈f̂ 〉t ) dt + 2(〈L̂f̂ 〉t − 〈L̂〉t 〈f̂ 〉t ) dWt. (74)

Now the martingale condition on {ft } implies that the drift of {ft } in (74) must vanish. In
other words, we require that the covariance of the two operators Ĵ and f̂ should vanish for
any choice of the function f (x). Thus in particular if we set f̂ = Ĵ then it follows that the
uncertainty of Ĵ must vanish in the state |ψt 〉, and hence without loss of generality we may
assume that Ĵ is a constant multiple of the identity matrix, and therefore drops out of the
dynamics.

Finally, we consider the roles of K̂ and L̂ in the expression for σ̂t in (55). To this end,
we shall examine the dynamics of the squared uncertainty of the operator Ĥ in the state |ψt 〉.
Now so far we have through our physical considerations specialized the general dynamics (65)
to the particular case

d|ψt 〉 = (−iĤ − 1
2 σ̂

†
t σ̂t

)|ψt 〉 dt + σ̂t |ψt 〉 dWt, (75)

where

σ̂t = iK̂ + L̂ − 〈L̂〉t , (76)

and Ĥ , K̂ and L̂ are time independent and Hermitian, with the further provision that K̂ and
L̂ are both given by functions of Ĥ . We shall call (75) the general stationary energy-based
stochastic Schrödinger equation.

Let us therefore investigate the extent to which the general stationary energy-based
dynamics (75) necessarily leads to state reduction. Writing

Vt = 〈Ĥ 2〉t − 〈Ĥ 〉2
t (77)

for the variance of Ĥ with respect to the state |ψt 〉, we obtain

dVt = d〈Ĥ 2〉t − 2〈Ĥ 〉t d〈Ĥ 〉t − (d〈Ĥ 〉t )2. (78)
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Now making use of the fact that both {〈Ĥ 2〉t } and {〈Ĥ 〉t } are martingales (cf [5]), we
immediately infer that {Vt } is a supermartingale. In fact, a calculation gives

dVt = −4〈(Ĥ − 〈H 〉t )(L̂ − 〈L〉t )〉2
t dt + 2〈(Ĥ − 〈H 〉t )2(L̂ − 〈L〉t )〉t dWt. (79)

It is apparent from (79) that the drift of the energy variance process is negative in the general
stochastic extension of the Schrödinger equation given by (75). This demonstrates that the
presence of some element of state reduction or relaxation is a generic feature of the dynamics
of (75), regardless of the specific choice of the functions determining K̂ and L̂.

This result offers some support to the proposal put forward in [3] that dynamic reduction
in quantum theory might be an ‘emergent’ phenomenon.

In fact, a short calculation establishes that under the general energy-based dynamics (75),
the variance process

{
V L

t

}
associated with the operator L̂, defined by V L

t = 〈(L̂ − 〈L̂〉t )2〉t ,
satisfies the conditions of being a potential, and admits the following representation as a
conditional variance:

V L
t = Et [(L∞ − Lt)

2], (80)

where L∞ denotes the terminal limiting value of the martingale {Lt } defined by Lt = 〈L̂〉t .
Thus, provided the eigenstates of L̂ are also eigenstates of Ĥ , then (75) necessarily

implies a reduction to energy eigenstates. In what follows, we shall therefore make the
simplest choice that ensures this condition, namely, K̂ = 0 and L̂ = 1

2σĤ , where σ is a
parameter. Nevertheless, we see that in a general setting there is scope for some variation in
the dynamics of the state vector from that appearing in (3). In particular, we can also consider
dropping the stationarity condition. Later in this paper we present a useful example of a
nonstationary dynamical law.

8. Conditional probabilities for reduction

An important special case of the situation described in section 6 arises when the observable
Ĝ corresponds to the projection operator �̂i onto the subspace of states with energy Ei

(cf [4, 2]). In this case, we have the relations Ĥ �̂i = �̂iĤ , �̂i�̂j = δij �̂i,
∑

i �̂i = 1 and∑
i Ei�̂i = Ĥ . The spectrum of Ĥ may or may not be degenerate.

Writing πit = 〈�̂i〉t for the expectation value of the operator �̂i in the state |ψt 〉, we
deduce as a consequence of the results of section 6 that

dπit = σπit (Ei − Ht) dWt, (81)

and that

dvit = −σ 2π2
it (Ei − Ht)

2 dt + σπit (1 − 2πit )(Ei − Ht) dWt. (82)

Here vit denotes the variance of the operator �̂i in the state |ψt 〉. We note that in the case of
a projection operator the variance takes the simple form

vit = πit (1 − πit ). (83)

The random variable πit has the interpretation of being the conditional probability that
reduction to a state with energy Ei will occur. In particular, the initial quantities πi = πi0 are
the Dirac transition probabilities from the initial state |ψ0〉 to a state with energy Ei .

It is evident that the process {πit } is a martingale and that this martingale is closed by the
random variable

πi∞ = 1{H∞=Ei }. (84)

That is to say,

πit = Et [πi∞]. (85)
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As a consequence we see that vit can be written in the form

vit = Et [(πi∞ − Et [πi∞])2]. (86)

In other words, vit can be interpreted as the conditional variance of the indicator function for
collapse to a state of energy Ei . Equation (86) follows immediately from (83) if we make use
of the fact that the terminal indicator function for the energy Ei satisfies (πi∞)2 = πi∞. We
see therefore that {vit } is a potential.

Now we proceed to derive another expression for {πit } that will play a key role in the
developments that follow. It is well known from the theory of stochastic differential equations
that an equation of the form (81) can be integrated. If a positive process {Xt } satisfies an
equation of the form

dXt = αtXt dWt, (87)

and if
∫ t

0 α2
s ds < ∞ almost surely for all t ∈ [0,∞), then we can write

Xt = X0 exp

(∫ t

0
αu dWu − 1

2

∫ t

0
α2

u du

)
, (88)

where X0 is the initial value of the process. If {αt } itself depends in some way on {Xt } then
one cannot say that (88) ‘solves’ (87). In that situation (88) should be regarded as an integral
representation of the stochastic differential equation (87). Nevertheless, we may be able to
extract useful information about the process {Xt } by expressing it in this form. In the present
case we can integrate (81) to obtain

πit = πi exp

(
σ

∫ t

0
(Ei − Hu) dWu − 1

2
σ 2
∫ t

0
(Ei − Hu)

2 du

)
. (89)

After some straightforward algebraic rearrangement this can be put in the form

πit = πi exp
[
σEi

(
Wt + σ

∫ t

0 Hu du
)− 1

2σ 2E2
i t
]

exp
(
σ
∫ t

0 Hu dWu + 1
2σ 2

∫ t

0 H 2
u du

) . (90)

A further simplification is then achieved if we introduce the {Ft }-adapted process
{ξt }0�t<∞ defined by the relation

ξt = σ

∫ t

0
Hu du + Wt. (91)

The process {ξt } is evidently a Brownian motion with drift. Making use of the relation

dξt = σHt dt + dWt, (92)

we can then put (90) in the form

πit = πi exp
(
σEiξt − 1

2σ 2E2
i t
)

exp
(
σ
∫ t

0 Hs dξs − 1
2σ 2

∫ t

0 H 2
s ds

) . (93)

Finally, we note that since
∑

i πit = 1, equation (93) leads us to the following identity:

exp

(
σ

∫ t

0
Hu dξu − 1

2

∫ t

0
H 2

u du

)
=
∑

i

πi exp

(
σEiξt − 1

2
σ 2E2

i t

)
. (94)

Inserting this relation into (93) we obtain the following result.

Proposition 4. The conditional probability process {πit } for reduction to a state of energy
Ei takes the form

πit = πi exp
(
σEiξt − 1

2σ 2E2
i t
)

∑
i πi exp

(
σEiξt − 1

2σ 2E2
i t
) , (95)
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where ξt = Wt + σ
∫ t

0 Hu du. The energy expectation process {Ht } is given by

Ht =
∑

i πiEi exp
(
σEiξt − 1

2σ 2E2
i t
)

∑
i πi exp

(
σEiξt − 1

2σ 2E2
i t
) , (96)

and the energy variance process {Vt } is given by

Vt =
∑

i πi(Ei − Ht)
2 exp

(
σEiξt − 1

2σ 2E2
i t
)

∑
i πi exp

(
σEiξt − 1

2σ 2E2
i t
) . (97)

We observe, incidentally, that it suffices to specify the value of ξt to determine πit , Ht

and Vt . In other words, the random behaviour of these quantities is specified entirely through
their dependence on ξt .

9. Information theoretic interpretation of the reduction process

Given the conditional probability πit for reduction to an energy eigenstate with energy Ei ,
we can consider the associated information entropy St . Since the conditional probability
approaches the indicator function (84) asymptotically, we expect the associated entropy to
decrease on average. This idea can be put into more precise terms as follows:

Proposition 5. The Shannon entropy process {St } associated with the conditional probability
process {πit } is a potential.

The Shannon entropy (or information entropy) associated with πit is defined by the
expression

St = −
∑

i

πit ln πit . (98)

This entropy is associated in a natural way with the random density matrix process defined by
the conditional expectation of the terminal state of the system:

R̂t = Et [|ψ∞〉〈ψ∞|]. (99)

For each value of t, clearly R̂t is positive semi-definite and has unit trace. It should also be
evident that

St = − tr(R̂t ln R̂t ). (100)

We note that the process {R̂t } is distinct from the process {ρ̂t } defined by

ρ̂t = E[|ψt 〉〈ψt |], (101)

which is deterministic in t. Thus, the state R̂t represents the best conditional estimate of
the terminal state of the system, whereas the state ρ̂t represents the initial unconditional
expectation of the state that the system will be in at time t. Evidently we have R̂0 = ρ̂∞. For
clarity let us call ρ̂t the von Neumann state and R̂t the Shannon state.

Now if the initial state of the system is a pure state |ψ0〉, with minimum von Neumann
entropy, then as the reduction proceeds the von Neumann state evolves into a mixed state ρ̂t

with higher entropy. Therefore, the von Neumann entropy −tr(ρ̂t ln ρ̂t ) associated with the
mixed state ρ̂t increases from zero to the terminal value −tr(ρ̂∞ ln ρ̂∞) = −∑

i πi ln πi . On
the other hand, the entropy of the initial Shannon state R̂0 is −∑

i πi ln πi and the entropy of
the terminal Shannon state R̂∞ is zero.

Thus, the evolution {ρ̂t } of the von Neumann state describes the increase in ignorance that
results in the statistical description of the system as time moves forward; whereas the evolution
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{R̂t } of the Shannon state describes the increase in information that results as the measurement
outcome is revealed. To put the matter another way, the entropy St associated with the Shannon
state R̂t is the negative of the information content generated by the information flow {Fs}0�s�t

up to time t. In particular, we expect the Shannon entropy St to decrease on average, because
more information is gained as the collapse process progresses. Finally, when the state has
reached an eigenstate, R̂∞ becomes a pure state. The proposition above, which we now
proceed to prove, asserts that this is indeed the case.

Proof of proposition 5. To begin, we determine the dynamical equation satisfied by the
entropy process {St }. We note that, as a consequence of the dynamical equation (81) for the
conditional probability process, and the use of Ito’s lemma, we have

d(ln πit ) = − 1
2σ 2(Ei − Ht)

2 dt + σ(Ei − Ht) dWt. (102)

It follows, by another application of Ito’s lemma, that

dSt = −1

2
σ 2Vt dt − σ

(∑
i

Eiπit ln πit − HtSt

)
dWt, (103)

where {Ht } is the energy process and {Vt } is the energy variance process. We observe that
the volatility of {St } is the covariance of the energy and the logarithm of the conditional
probability. Since the drift of {St } is strictly negative we see that the entropy process is a
supermartingale.

To show that {St } is a potential we need to show that limt→∞ E[St ] vanishes. Because the
conditional probabilities {πit } are bounded in the range 0 � πit � 1, the entropy is positive, and
is also bounded, and thus limt→∞ E[St ] = E[limt→∞ St ] by virtue of the bounded convergence
theorem. On the other hand, (84) implies that πi∞ is unity if the terminal energy is Ei and
zero otherwise. Therefore, limt→∞ St = 0 almost surely, and that establishes the result. �

The fact that {St } is a potential leads to the following observation concerning the Shannon
entropy and energy fluctuations during the reduction process.

Proposition 6. The Shannon entropy process {St } is given by the conditional expectation of
the integrated future energy fluctuation level:

St = 1

2
σ 2Et

[∫ ∞

t

Vs ds

]
. (104)

Proof. To derive this result we integrate the dynamical equation (103) satisfied by the entropy
to deduce that

ST = S0 − 1

2
σ 2
∫ T

0
Vs ds − σ

∫ T

0

(∑
i

Eiπis ln πis − HsSs

)
dWs. (105)

Taking the conditional expectation of this relation we infer, after some rearrangement of terms,
that

Et [ST ] = St − 1

2
σ 2Et

[∫ T

t

Vs ds

]
. (106)

The identity (104) then follows from the fact that {St } is a potential. �

It is interesting to note, incidentally, that if we let t → 0 in (106), we obtain the following
formula for the cumulative energy fluctuation during the collapse process:

1

2
σ 2
∫ ∞

0
E[Vs] ds = S0. (107)
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If the information entropy associated with the initial transition probabilities {πi} is large, so
that the initial pure state |ψ0〉 is a highly homogenized superposition of the energy eigenstates,
one would expect the energy fluctuations during the reduction process to be large. Conversely,
if this entropy is small, so that the initial state is close to one or a few of the eigenstates, then
the energy fluctuations during the reduction process should be small. Proposition 6 makes this
intuition precise. In particular, the right-hand side of (107) measures the entropic uncertainty
of the initial energy dispersion (see, e.g., [14]) and is independent of the energy spectrum of
the system.

10. Remarks on the ancillary linear dynamics for the state vector

One of the main goals of this paper is to present in detail a general method for obtaining the
solution to the dynamical equation (3). Before embarking upon this, however, we shall first
consider the properties of the linear stochastic differential equation

d|φt 〉 = −iĤ |φt 〉 dt − 1
8σ 2Ĥ 2|φt 〉 dt + 1

2σĤ |φt 〉 dξt , (108)

and study the relation of this equation to (3). The stochastic differential equation (108), which
we shall call the ancillary equation, plays an important role in the analysis of (3). In this
section we shall also introduce some change-of-measure formulae that will be applied in later
sections of the paper.

In the analysis that follows in this section, the process {|φt 〉}0�t<∞ is to be understood as
defined on a fixed probability space (�,F, Q) with filtration {Ft }0�t<∞ with respect to which
{ξt }0�t<∞ is a standard Brownian motion. The precise relation of the measure Q appearing
here to the measure P introduced earlier will be specified shortly, as will the relation between
the processes {ξt } and {Wt }. In particular, the process {ξt } introduced in this section has no
a priori relation to the process {ξt } with the same name introduced in section 8, though in
what follows the connection between these processes is made precise.

The solution to the ancillary equation (108) is given by

|φt 〉 = exp
(−iĤ t + 1

2σĤξt − 1
4σ 2Ĥ 2t

) |φ0〉, (109)

where |φ0〉 is a prescribed initial state, normalized to unity. The fact that (109) implies (108)
can be verified by a direct application of Ito’s lemma

d|φt 〉 = |φ̇(ξt , t)〉 dt + |φ′(ξt , t)〉 dξt + 1
2 |φ′′(ξt , t)〉(dξt )

2, (110)

with |φt 〉 = |φ(ξt , t)〉, where the function |φ(ξ, t)〉 is defined by

|φ(ξ, t)〉 = exp
(−iĤ t + 1

2σĤξ − 1
4σ 2Ĥ 2t

) |φ0〉. (111)

The dot and prime in (110) denote differentiation with respect to t and ξ , respectively.
We see as a consequence of (109) that the squared norm of |φt 〉 takes the form

〈φt |φt 〉 = 〈φ0| exp
(
σĤξt − 1

2σ 2Ĥ 2t
) |φ0〉. (112)

Now writing Ĥ = ∑
i Ei�̂i , where �̂i as before denotes the projection operator onto the

Hilbert subspace for which Ĥ takes the value Ei , we have

〈φt |φt 〉 =
∑

i

πi exp

(
σEiξt − 1

2
σ 2E2

i t

)
. (113)

In other words, 〈φt |φt 〉 can be expressed as a weighted sum of geometric Brownian motions.
Here, πi as before signifies the Dirac transition probability

πi = 〈φ0|�̂i |φ0〉
〈φ0|φ0〉 (114)
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from the initial state |φ0〉 to the Lüders state |φi〉 associated with the initial state |φ0〉 and
the eigenvalue Ei . It follows immediately by virtue of the properties of geometric Brownian
motion that the process {〈φt |φt 〉} is a martingale in the Q-measure, satisfying

EQ
s [〈φt |φt 〉] = 〈φs |φs〉. (115)

This result can also be seen to follow directly from (112), by an application of Ito’s lemma,
which shows the squared norm of |φt 〉 satisfies the dynamical equation

d〈φt |φt 〉 = σHt 〈φt |φt 〉 dξt , (116)

where the process {Ht } is defined by

Ht = 〈φ0|Ĥ exp
(
σĤξt − 1

2σ 2Ĥ 2t
)|φ0〉

〈φ0| exp
(
σĤξt − 1

2σ 2Ĥ 2t
)|φ0〉

. (117)

The stochastic differential equation (116) can then be put in an integral form to give a useful
alternative expression for the squared norm:

〈φt |φt 〉 = exp

(
σ

∫ t

0
Hu dξu − 1

2
σ 2
∫ t

0
H 2

u du

)
. (118)

Our intention is to show that the process {Ht } defined in (117) can in fact be identified
with the energy process defined in (4). For this, we consider the dynamics of the normalized
state vector

|ψt 〉 = 〈φt |φt 〉−1/2|φt 〉. (119)

If we write Nt = 〈φt |φt 〉1/2 for the normalization factor, then by Ito’s lemma we obtain

dN−1
t = 3

8σ 2H 2
t N−1

t dt − 1
2σHtN

−1
t dξt . (120)

Hence, for the dynamics of the normalized state |ψt 〉 = N−1
t |φt 〉 we have

d|ψt 〉 = N−1
t d|φt 〉 +

(
dN−1

t

)|φt 〉 +
(
dN−1

t

)
(d|φt 〉), (121)

and thus

d|ψt 〉 = −iĤ |ψt 〉 dt − 1
8σ 2

(
Ĥ 2 + 2ĤHt − 3H 2

t

)|ψt 〉 dt + 1
2 (Ĥ − Ht)|ψt 〉 dξt . (122)

This expression can be simplified if we introduce a process {Wt } by the relation

Wt = ξt − σ

∫ t

0
Hu du. (123)

Then the dynamics for the normalized state vector {|ψt 〉} can be written as

d|ψt 〉 = −iĤ |ψt 〉 dt − 1
8σ 2(Ĥ − Ht)

2|ψt 〉 dt + 1
2σ(Ĥ − Ht)|ψt 〉 dWt, (124)

which is identical in form to (3), and this leaves us with the problem of the interpretation of
the process {Wt }.

Now {ξt } is by hypothesis a Q-Brownian motion, so evidently {Wt }, as defined in (123), is
a Q-Brownian motion with drift. We can, however, find a new measure P with respect to which
{Wt } is a P-Brownian motion. The precise statement is as follows. Let us fix a finite time
T < ∞. Then the relevant change-of-measure density Q-martingale {�t }0�t�T appropriate
for transforming from Q to P over the time horizon t ∈ [0, T ] is defined by �t = 〈φt |φt 〉
or equivalently (118). Thus, if A ∈ FT denotes any FT -measurable set, and if EQ denotes
expectation with respect to the measure Q, then we define the probability of the event A with
respect to the measure P by the formula

P(A) = EQ[�T 1A]. (125)
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The theorem of Girsanov [20, 28, 29] allows us to infer that if {ξt } is a Q-Brownian motion,
then the process {Wt }0�t�T defined by (123) is a P-Brownian motion over the given time
horizon.

We note, incidentally, that if {mt } is any Q-martingale, then the process {Mt }0�t�T defined
by Mt = mt/�t is a P-martingale. In particular, since the process

〈φt |Ĥ |φt 〉 = 〈φ0|Ĥ exp

(
σĤξt − 1

2
σ 2Ĥ 2t

)
|φ0〉

=
∑

i

πiEi exp

(
σEiξt − 1

2
σ 2E2

i t

)
(126)

is a Q-martingale (a sum of geometric Brownian motions is a martingale), it follows that the
energy process {Ht } defined by

Ht = 〈φt |Ĥ |φt 〉
〈φt |φt 〉 = 〈ψt |Ĥ |ψt 〉

〈ψt |ψt 〉 (127)

is a P-martingale. Therefore, for any finite time horizon [0, T ] the dynamics of (3) can be
reproduced by the following procedure. First, we solve the ancillary equation (108) with the
required initial condition. Next, the solution thus obtained is used to construct the processes
{Ht }0�t�T , {�t }0�t�T and {|ψt 〉}0�t�T . Finally, the change-of-measure density martingale
{�t } is used to change from the ‘ancillary’ measure Q to the ‘physical’ measure P, which is
used to interpret the statistical properties of the dynamics of the quantum system.

With this information at hand, we can now present another useful characterization of the
dynamics of the state-vector process. We begin with (3) and (4), and introduce the process
{ξt } by use of the relation (123). The probability space (�,F, P) and the filtration {Ft } are
defined, with respect to which {Wt } is a standard Brownian motion. We introduce on this
probability space the state-vector process {|�t 〉} by writing

|�t 〉 = exp

(
−iĤ t − 1

4t
(ξt − σĤ t)2

)
|ψ0〉. (128)

Then it should be evident that

|ψt 〉 = |�t 〉√〈�t |�t 〉
, (129)

and hence that |�t 〉 is an unnormalized form of the state vector |ψt 〉. In fact, so is the state
vector |φt 〉, but |�t 〉 and |φt 〉 have different norms.

The significance of the process {|�t 〉} is that this process is identical (modulo
straightforward minor changes in notation) to the nonunitary evolution introduced and used by
Pearle [24, 25] for the formulation and analysis of collapse models. In particular, equation (2.1)
of [25] is identical to our equation (128) above. Pearle [25] asserts that (128) represents ‘the
most transparent formulation of the energy-based collapse model’. Although (128) does
indeed represent a formulation of the model, it can hardly be regarded as transparent. The
problem is that the definition of {ξt } involves |�t 〉, and hence (128) is, in effect, no more
than an integral representation of the nonlinear stochastic differential equation (3). To put
the matter differently, whereas {|�t 〉} depends on {ξt }, the probability law of the process {ξt }
depends on {〈�t |�t 〉}; this is the content of equation (2.2) of [25]. Thus, when in what follows
we speak of obtaining a ‘solution’ to (3), it should be emphasized that we are not merely
seeking a ‘reformulation’ such as that represented by (128) or a change-of-measure induced
linearization.
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11. Observation of the energy in the presence of noise

We now present a general method for obtaining an explicit solution to the stochastic differential
equation (3). The method we propose ties in very suggestively with the theory of nonlinear
filtering as developed for example in [21].

Let the probability space (�,F, P) be given, and let {Gt } be a filtration of F with respect
to which a standard Brownian motion {Bt } is specified, together with an independent random
variable H. We assume that H is G0-measurable and that it takes the values {Ei}i=1,2,...,N with
the probabilities {πi}i=1,2,...,N . If we look ahead briefly to the results that will eventually
follow, the random variable H will have the interpretation of representing the terminal value of
the energy after state reduction, given the Hamiltonian Ĥ and the initial state |ψ0〉. However,
for the moment we assign no a priori physical significance to H and {Bt }, which are introduced
as an ansatz for obtaining a solution for (3).

Now suppose we define a random process {ξt }0�t<∞ according to the scheme

ξt = σHt + Bt, (130)

where σ is a positive constant. Since our units are such that h̄ = 1, the random variable H can
be thought of as having units of [T]−1, and hence σ , Bt and ξt all have units of [T]

1
2 . Later

we shall identify σ with the parameter appearing in the dynamical equation (3), but for the
moment we leave its value unspecified.

The process {ξt } introduced here has no a priori connection with the process having the
same name introduced in section 8. Nevertheless, as we proceed it will be indicated in what
sense these processes can be identified with one another. In the probability measure P, the
process {ξt } defined by (130) is a Brownian motion with a random drift rate σH . For each
value of t one can think of ξt as providing noisy information about the random variable H.
That is to say, given the value of ξt one can try to infer information about the value of H.
The presence of the independent noise Bt interferes with this process. In particular, for small
values of t, say those for which t � σ 2, it is typically the case that |Bt |/σ t � 1/σ 2. This
follows from the fact that E[|Bt |] = √

2t/π . Thus, if t � σ 2 and if |H | � 1/σ 2, then
knowledge of ξt/σ t provides little information about the value of H. On the other hand, for
large values of t we have ξt/σ t ≈ H . We emphasize that at this point in our analysis the
interpretation of {ξt } is irrelevant, since it is being introduced as an ansatz for obtaining the
solution to (3). Nevertheless, it will be worthwhile to remark as we proceed on various aspects
of the nature of the ‘information process’ {ξt }.

Let
{
F ξ

t

}
denote the filtration generated by {ξt }. We consider the process {Ht }0�t�∞

generated by the conditional expectation

Ht = E
[
H
∣∣F ξ

t

]
. (131)

Intuitively, conditioning with respect to the σ -algebra F ξ
t means conditioning with respect

to the outcome of the random trajectory {ξs}0�s�t . Clearly, F ξ
t ⊂ Gt since knowledge of H

together with {Bs}0�s�t implies knowledge of {ξs}0�s�t , although the converse is not the case.

Proposition 7. The conditional expectation E
[
H
∣∣F ξ

t

]
represents the best estimate for the

value of H given the trajectory of the process {ξs}0�s�t from time 0 up to time t.

Proof. Consider the problem of finding an F ξ
t -measurable random variable Yt that minimizes

the expected value of the squared deviation of H from Yt , given the information F ξ
t . Thus, we

wish to find a choice of Yt that for each ω ∈ � minimizes

Jt = E
[
(H − Yt )

2
∣∣F ξ

t

]
. (132)
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Since Yt is assumed to be F ξ
t -measurable, we have

E
[
(H − Yt )

2
∣∣F ξ

t

] = E
[
H 2

∣∣F ξ
t

]− 2YtE
[
H
∣∣F ξ

t

]
+ Y 2

t . (133)

Now setting Yt = E
[
H
∣∣F ξ

t

]
+ Zt , where Zt is any F ξ

t -measurable random variable, we find
that

Jt = E
[
(H − Ht)

2
∣∣F ξ

t

]
+ Z2

t , (134)

where Ht = E
[
H
∣∣F ξ

t

]
. Therefore Jt achieves its minimum if and only if Zt = 0. �

The intuition behind this result is as follows. We can think of H as being a hidden variable.
Its value is hidden by virtue of the noise process {Bt }. The best estimate available at time t for
the value of H is the process {Ht } defined by (131). Our goal now is to show that {Ht } can be
identified with the energy expectation process (4) associated with the standard energy-based
stochastic extension of the Schrödinger equation.

12. Optimal estimation of the energy

We proceed in this section to calculate the conditional expectation (131) to establish the
following useful result.

Proposition 8. Let H be a random variable taking the value Ei with probability
πi (i = 1, 2, . . . , n), and set ξt = σHt + Bt for 0 � t < ∞, where σ is a constant and the
Brownian motion {Bt } is independent of H. Then the conditional expectation Ht = E

[
H
∣∣F ξ

t

]
is given by

Ht =
∑

i πiEi exp
(
σEiξt − 1

2σ 2E2
i t
)

∑
i πi exp

(
σEiξt − 1

2σ 2E2
i t
) . (135)

Proof. First, we observe that {ξt } is a Markov process. To establish that {ξt } is Markovian,
we need to show that for all T � t the conditional probability distribution of ξT given the
history {ξs}0�s�t is equal to the conditional probability distribution of ξT given the value ξt of
the process at time t alone. In other words, we need to establish the following result:

Lemma 1. Let ξt = σHt + Bt , where H is a random variable taking the values
Ei (i = 1, 2, . . . , N) with probability P (H = Ei) = πi , σ is a constant and {Bt } is a
standard P-Brownian motion, independent of H. Then for all T � t and for all x ∈ R we have

P
(
ξT � x

∣∣F ξ
t

) = P(ξT � x|ξt ). (136)

Proof of lemma 1. It suffices to show that

P
(
ξt � x|ξs, ξs1 , ξs2 , . . . , ξsk

) = P(ξt � x|ξs) (137)

for any collection of times t, s, s1, s2, . . . , sk such that t � s � s1 � s2 � · · · � sk > 0.
Now it is a remarkable property of Brownian motion that for any times t, s, s1 satisfying
t > s > s1 > 0 one can show that

Bt and
Bs

s
− Bs1

s1
are independent. (138)

More generally, if s > s1 > s2 > s3 > 0, we find that

Bs

s
− Bs1

s1
and

Bs2

s2
− Bs3

s3
are independent. (139)
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In each case the result stated follows after a calculation of the covariance of the indicated
variables. Next we note that

ξs

s
− ξs1

s1
= Bs

s
− Bs1

s1
. (140)

It follows therefore that

P
(
ξt � x|ξs, ξs1 , ξs2 , . . . , ξsk

) = P

(
ξt � x

∣∣∣∣ξs,
ξs

s
− ξs1

s1
,
ξs1

s1
− ξs2

s2
, . . . ,

ξsk−1

sk−1
− ξsk

sk

)

= P

(
ξt � x

∣∣∣∣ξs,
Bs

s
− Bs1

s1
,
Bs1

s1
− Bs2

s2
, . . . ,

Bsk−1

sk−1
− Bsk

sk

)
. (141)

However, since ξt and ξs are independent of Bs/s−Bs1

/
s1, Bs1

/
s1 −Bs2

/
s2, . . . , Bsk−1

/
sk−1 −

Bsk

/
sk , the desired result of lemma 1 follows. �

Continuing with the proof of Proposition 8, we note next that

E
[
H
∣∣F ξ

t

] = E[H |ξt ]. (142)

That is to say, rather than conditioning on the σ -subalgebra F ξ
t generated by {ξs}0�s�t it

suffices to condition on ξt alone (conditioning with respect to a random variable means
conditioning with respect to the σ -algebra generated by that random variable). The additional
information in {ξs}0�s�t does not allow us to improve the estimate of H once ξt has been
given. This follows from the fact that {ξt } is Markovian and that

lim
t→∞

ξt

t
= σH. (143)

To calculate E[H |ξt ], we require a version of the Bayes formula applicable when
we consider the probability of a discrete random variable conditioned on the value of a
continuous random variable. In this connection, we recall for convenience that for discrete
random variables A and B that take on the values A = Ai (i = 1, 2, . . . , n) and B = Bj

(j = 1, 2, . . . , m) with probabilities qi and rj , respectively, then we have the classical Bayes
formula

P(A = Ai |B = Bj) = P(A = Ai)P(B = Bj |A = Ai)

P(B = Bj)
, (144)

or equivalently

P(A = Ai |B = Bj) = qiP(B = Bj |A = Ai)∑n
i=1 qiP(B = Bj |A = Ai)

, (145)

since the marginal probability for the random variable B can be written as

P(B = Bj) =
n∑

i=1

qiP(B = Bj |A = Ai). (146)

Alternatively, instead of conditioning directly with respect to the event B = Bj we can
condition with respect to the random variable B, and write

P(A = Ai |B) = P(A = Ai)P(B|A = Ai)

P(B)

= qiP(B|A = Ai)∑n
i=1 qiP(B|A = Ai)

, (147)
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where P(B) is the random variable that takes the value rj = P(B = Bj) when B takes value
Bj , and P(B|A = Ai) is the random variable that takes the value P(B = Bj |A = Ai) when B
takes value Bj . Clearly,

P(B) =
n∑

i=1

qiP(B|A = Ai). (148)

For our purpose we need the analogue of (147) applicable in the situation where A is a
discrete random variable and B is a continuous random variable. In that case

P(A = Ai |B) = P(A = Ai)ρ(B|A = Ai)

ρ(B)
, (149)

or equivalently

P(A = Ai |B) = qiρ(B|A = Ai)∑n
i=1 qiρ(B|A = Ai)

, (150)

since

ρ(B) =
n∑

i=1

qiρ(B|A = Ai). (151)

Here ρ(x) denotes the density function of the continuous random variable B, so

P(B < b) =
∫ b

−∞
ρ(x) dx, (152)

and ρ(x|A = Ai) is the conditional density of B given A = Ai , so

P(B < b|A = Ai) =
∫ b

−∞
ρ(x|A = Ai) dx. (153)

The random variable ρ(B), resp. ρ(B|A = Ai), takes the value ρ(b), resp. ρ(b|A = Ai),
when B takes the value b.

Equation (150) is the version of the Bayes formula we require in order to determine the
conditional expectation (131). In particular, since ξt is a continuous random variable, we have

P(H = Ei |ξt ) = P(H = Ei)ρ(ξt |H = Ei)

ρ(ξt )

= P(H = Ei)ρ(ξt |H = Ei)∑
i P(H = Ei)ρ(ξt |H = Ei)

= πiρ(ξt |H = Ei)∑
i πiρ(ξt |H = Ei)

. (154)

Here ρ(ξt |H = Ei) denotes the conditional density function for the random variable ξt given
that H = Ei . Since {Bt } is a standard Brownian motion in the P-measure, the conditional
probability density for ξt is Gaussian and is given by

ρ(ξt |H = Ei) = 1√
2πt

exp

(
− 1

2t
(ξt − σEit)

2

)
. (155)

It follows from the Bayes law (154) that the desired conditional probability for the random
variable H is given by

P(H = Ei |ξt ) = πi exp
(
σEiξt − 1

2σ 2E2
i t
)

∑
i πi exp

(
σEiξt − 1

2σ 2E2
i t
) . (156)
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Therefore we deduce that

Ht = E[H |ξt ] =
∑

i

EiP(H = Ei |ξt )

=
∑

i πiEi exp
(
σEiξt − 1

2σ 2E2
i t
)

∑
i πi exp

(
σEiξt − 1

2σ 2E2
i t
) . (157)

That concludes the proof of proposition 7. �

More generally (see, e.g., [33]), a similar argument establishes that for any bounded
function x → f (x) we have

E
[
f (H)

∣∣F ξ
t

] =
∑

i πif (Ei) exp
(
σEiξt − 1

2σ 2E2
i t
)

∑
i πi exp

(
σEiξt − 1

2σ 2E2
i t
) . (158)

13. Existence of the innovation process

We now proceed to establish the following basic result.

Proposition 9. Let {ξt } and {Ht } be defined as in Proposition 8. Then the process {Wt }
defined by

Wt = ξt − σ

∫ t

0
Hs ds (159)

is an
{
F ξ

t

}
-Brownian motion.

Proof. Starting with the relation ξt = σHt + Bt we define {Wt } as above, with {Ht } defined
as in (131). To show that {Wt } is an

{
F ξ

t

}
-Brownian motion it suffices to show that {Wt }

is an
{
F ξ

t

}
-martingale and that (dWt)

2 = dt . First, we shall demonstrate that {Wt } is an{
F ξ

t

}
-martingale. Letting t � T we deduce that

E
[
WT

∣∣F ξ
t

] = E
[
ξT

∣∣F ξ
t

]− σE

[∫ T

0
Hs ds

∣∣∣∣F ξ
t

]

= σT E
[
H
∣∣F ξ

t

]
+ E

[
BT

∣∣F ξ
t

]− σE

[∫ T

0
Hs ds

∣∣∣∣F ξ
t

]

= σT E
[
H
∣∣F ξ

t

]
+ E

[
BT

∣∣F ξ
t

]− σ

∫ T

0
E
[
Hs

∣∣F ξ
t

]
ds, (160)

by Fubini’s theorem. Next, we note that∫ T

0
E
[
Hs

∣∣F ξ
t

]
ds =

∫ t

0
E
[
Hs

∣∣F ξ
t

]
ds +

∫ T

t

E
[
Hs

∣∣F ξ
t

]
ds

=
∫ t

0
Hs ds +

∫ T

t

Ht ds

=
∫ t

0
Hs ds + (T − t)Ht . (161)

Here we have used the fact that {Ht } is an
{
F ξ

t

}
-martingale. Substituting (161) into (160) we

obtain

E
[
WT

∣∣F ξ
t

] = σ tE
[
H
∣∣F ξ

t

]
+ E

[
BT

∣∣F ξ
t

]− σ

∫ t

0
Hs ds. (162)
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Finally, we observe that by the tower property of conditional expectation we have

E
[
BT

∣∣F ξ
t

] = E
[
E
[
BT

∣∣FB
t ,H

]∣∣F ξ
t

] = E
[
Bt

∣∣F ξ
t

]
. (163)

Inserting this into (162) we obtain

E
[
WT

∣∣F ξ
t

] = σ tHt + E
[
Bt

∣∣F ξ
t

]− σ

∫ t

0
Hs ds

= E
[
(σ tH + Bt)

∣∣F ξ
t

]− σ

∫ t

0
Hs ds

= E
[
ξt

∣∣F ξ
t

]− σ

∫ t

0
Hs ds = Wt, (164)

and this establishes that {Wt } is an
{
F ξ

t

}
-martingale. Next, we observe that since

dWt = σ(H − Ht) dt + dBt, (165)

it follows at once that (dWt)
2 = dt . This, together with the fact that {Wt } is an

{
F ξ

t

}
-

martingale, implies that {Wt } is an
{
F ξ

t

}
-Brownian motion. �

We call {Wt } the innovation process associated with the dynamics of the wavefunction.
The significance of the fact that {Wt } is an

{
F ξ

t

}
-Brownian motion is that the process {ξt } as

defined in (130) satisfies a diffusion equation of the form

dξt = σHt dt + dWt, (166)

where Ht = H(ξt , t). As a result, one can prove that F ξ
t = FW

t ; that is to say, the information
set generated by {Wt } is equivalent to that generated by {ξt }. It is the innovation process {Wt },
and not the noise {Bt }, that ‘drives’ the dynamics of the state-vector process {|ψt 〉} in (3).

Now let |ψ0〉 be the initial normalized state vector of the quantum system, and let �̂i denote
for each value of i the projection operator onto the subspace of Hilbert space corresponding
to the energy eigenvalue Ei , which may be degenerate. As before, we let

|φi〉 = π
−1/2
i �̂i |ψ0〉 (167)

denote the Lüders state corresponding to Ei , and we write

πit = P(H = Ei |ξt ) (168)

for the process defined by (156).

Theorem 1. The solution of the stochastic differential equation

d|ψt 〉 = −iĤ |ψt 〉 dt − 1
8σ 2(Ĥ − Ht)

2|ψt 〉 dt + 1
2σ(Ĥ − Ht)|ψt 〉 dWt (169)

with initial condition |ψ0〉 is given by

|ψt 〉 =
∑

i

e−iEi tπ
1/2
it |φi〉. (170)

Here, |φi〉 denotes the Lüders state for the eigenvalue Ei , and

πit = πi exp
(
σEiξt − 1

2σ 2E2
i t
)

∑
i πi exp

(
σEiξt − 1

2σ 2E2
i t
) , (171)

where ξt = σHt +Bt . The random variable H takes the value {Ei} with the probabilities {πi},
and {Bt } is a Brownian motion independent of H. The process {Ht } is defined by Ht = ∑

i Eiπit

and the
{
F ξ

t

}
-Brownian motion {Wt } is given by Wt = ξt − σ

∫ t

0 Hu du.
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Proof. It is a straightforward exercise to verify that (170) satisfies the stochastic differential
equation (3) with the given initial condition. In particular, by applying Ito’s lemma to (171)
and using the relation (166), we can verify that {πit } satisfies

dπit = σ(Ei − Ht)πit dWt. (172)

Then with another application of Ito’s lemma we deduce that

dπ
1/2
it = − 1

8σ 2(Ei − Ht)
2π

1/2
it dt + 1

2σ(Ei − Ht)π
1/2
it dWt, (173)

and with this relation at hand a short calculation shows that (170) satisfies (3). �

14. Direct verification of the reductive property

Thus, summing up, the stochastic equation (3) can be solved as follows. We let H be a random
variable taking values {Ei} with the probabilities {πi} defined by (64) or equivalently by

πi = 〈ψ0|�̂i |ψ0〉
〈ψ0|ψ0〉 . (174)

Letting {Bt } denote an independent Brownian motion, we define the process {ξt }0�t<∞ by
writing ξt = σHt + Bt . The solution of (3) is then given by (170) or equivalently

|ψt 〉 =
∑

i π
1/2
i exp

(−iEit + 1
2σEiξt − 1

4σ 2E2
i t
)|φi〉(∑

iπi exp
(
σEiξt − 1

2σ 2E2
i t
))1/2 , (175)

where the
{
F ξ

t

}
-Brownian motion {Wt } driving {|ψt 〉} in (169) is given by (159), with {Ht }

defined as in (157).
The fact that (157) defines a reduction process for the energy can be verified directly as

follows. Suppose, in a particular realization of the process {Ht }, the random variable H takes
the value Ej for some specific choice of the index j . That is to say, we condition on the event
H = Ej . Substituting ξt = σEj t + Bt for the corresponding realization of {Ht }, we have

Ht =
∑

i πiEi exp
(
σEiBt − 1

2σ 2Ei(Ei − 2Ej)t
)

∑
i πi exp

(
σEiBt − 1

2σ 2Ei(Ei − Ej)t
)

=
∑

i πiEi exp
(
σ(Ei − Ej)Bt − 1

2σ 2(Ei − Ej)
2t
)

∑
i πi exp

(
σ(Ei − Ej)Bt − 1

2σ 2(Ei − Ej)2t
)

= πjEj +
∑

i( =j) πiEi exp
(
σ(Ei − Ej)Bt − 1

2σ 2(Ei − Ej)
2t
)

πj +
∑

i( =j) πi exp
(
σ(Ei − Ej)Bt − 1

2σ 2(Ei − Ej)2t
) . (176)

However, the martingale {Mijt } defined for i = j by

Mijt = exp
(
σ(Ei − Ej)Bt − 1

2σ 2(Ei − Ej)
2t
)
, (177)

which appears in (176), has the following property:

lim
t→∞ P(Mijt > 0) = 0. (178)

In other words, {Mijt } converges to zero for large t with probability 1. We note, incidentally,
that a geometric Brownian motion, i.e. a process of the form

Xt = exp
(
νBt − 1

2ν2t
)
, (179)

has the property that it converges to unity in expectation but to zero in probability. That is to
say, limt→∞ E[Xt ] = 1 whereas limt→∞ P(Xt > 0) = 0. Since

Ht = πjEj +
∑

i( =j) πiEiMijt

πj +
∑

i( =j) πiMijt

, (180)
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we see that {Ht } converges to the value Ej with probability 1. A similar argument immediately
shows that if H = Ej then for each value of i we have

lim
t→∞ πit = 1{i=j}, (181)

which shows that {|ψt 〉} converges to the Lüders state corresponding to the energy eigenvalue
j with probability 1, in accordance with the results noted in [4].

The advantage of the expression (157) is that {Ht } and {|ψt 〉} are expressed algebraically
in terms of the underlying random variable H and the independent Brownian motion {Bt }.
As a consequence, we can directly investigate and verify various properties of the reduction
process (3) without having to resort to numerical integration.

15. Identification of independent noise and energy

In solving the stochastic equation (3) we have introduced in section 11 the idea of filtering,
that is, estimation of the value of the random variable H, given noisy information about H,
where the noise is induced by an independent random process {Bt }. Although the method is
useful in obtaining an analytical solution to (3), the introduction of these random variables
might appear artificial, because it is not immediately obvious how these variables emerge out
of the problem specified by (3). Remarkably, however, it turns out that we can derive the
quantities introduced in section 11 from the ingredients specified in (3) and (4). The aim of
this section is to show how this can be achieved. We start with the following result.

Proposition 10. Let {Ht } denote the process defined by (4) and {ξt } the process defined by
(91). The random variables H∞ = lims→∞ Hs and Bt = ξt − σ tH∞ are independent for all
t. Furthermore, the process {Bt } is a standard Brownian motion.

Proof. We begin by establishing the independence of the random variables Bt and H∞. To
this end, we note that it suffices to verify that the relation

E[exBt +yH∞ ] = E[exBt ]E[eyH∞ ] (182)

holds for all x, y. The verification of this property proceeds as follows. Using the tower
property of conditional expectation (see section 2) we have

E[exBt +yH∞ ] = E
[
E
[
exBt +yH∞

∣∣FW
t

]]
= E

[
E
[
exξt +(y−σxt)H∞

∣∣FW
t

]]
= E

[
exξt E

[
e(y−σxt)H∞

∣∣FW
t

]]
, (183)

where we have used the
{
FW

t

}
-measurability of the random variable ξt in the last step. Let us

now consider the conditional expectation E
[
e(y−σxt)H∞

∣∣FW
t

]
appearing inside the brackets in

(183). By use of the expression for the conditional probability of H∞ obtained in (156) we
deduce that

E
[
e(y−σxt)H∞

∣∣FW
t

] =
∑

i πi exp
(
(y − σxt)Ei + ξtEiσ − 1

2E2
i σ

2t
)

∑
i πi exp

(
ξtEiσ − 1

2E2
i σ

2t
) . (184)

To proceed further in determining the outer expectation in (183) we make use of the
following subsidiary result.

Lemma 2.∑
i

πi exp

(
ξtEiσ − 1

2
E2

i σ
2t

)
= exp

(
σ

∫ t

0
Hs dξs − 1

2
σ 2
∫ t

0
H 2

s ds

)
. (185)
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Proof. Let us write �t = �(ξt , t) for the left-hand side of (185), where �(ξ, t) is the
function of two variables defined by

�(ξ, t) =
∑

i

πi exp

(
ξEiσ − 1

2
E2

i σ
2t

)
. (186)

Then by Ito’s lemma we have

d�t = �̇t dt + �′
t dξt + 1

2�′′
t (dξt )

2, (187)

where the dot and the prime denote differentiation with respect to t and ξ , respectively. Next
we observe that (dξt )

2 = dt , that �̇t + 1
2�′′

t = 0, and that �′
t = σHt�t , the last relation

following from (157). As a consequence, we see that {�t } satisfies

d�t = σHt�t dξt . (188)

Finally, we note that the integral representation for this stochastic differential equation, with
initial condition �0 = 1, is given by the right-hand side of (185). �

The key point is that the right-hand side of (185) can be used as change-of-measure
density. Recall that {Wt } is a standard Brownian motion in the measure P. Since {Ht } is
bounded and

{
FW

t

}
-adapted, it follows by Girsanov’s theorem that there exists an equivalent

probability measure Q such that the process {ξt } defined by

ξt = Wt + σ

∫ t

0
Hs ds (189)

is a standard Brownian motion in the Q-measure. We let �t denote the change-of-measure
density in the right-hand side of (185). Then for any

{
FW

t

}
-measurable random variable Xt

the conditional expectations in these two probability measures are related according to the
scheme

EP
s [Xt ] = 1

�s

EQ
s [�tXt ] and EQ

s [Xt ] = �sE
P
s

[
1

�t

Xt

]
. (190)

Equipped with these results we proceed to determine the conditional expectation (183).
In particular, if we substitute (184) into (183) and use the fact that the denominator appearing
in the expectation is the change-of-measure density �t , and hence {ξt } is a standard Brownian
motion in the Q-measure, we can apply the second identity in (190) to deduce that

E[exBt +yH∞ ] = EQ

[
exξt

∑
i

πi exp

(
(y − σxt)Ei + ξtEiσ − 1

2
E2

i σ
2t

)]

=
∑

i

πi exp

(
(y − σxt)Ei − 1

2
E2

i σ
2t

)
EQ[e(x+Eiσ)ξt ]

=
∑

i

πi exp

(
(y − σxt)Ei − 1

2
E2

i σ
2t

)
e

1
2 (x+Eiσ)2t

=
(∑

i

πi eyEi

)
e

1
2 x2t . (191)

This establishes the relation (182), and hence that random variables Bt and H∞ are independent.
In addition, as a bonus the result

E[exBt ] = e
1
2 x2t (192)

shows that Bt is normally distributed with mean zero and variance t.
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To complete the proof that {Bt } is a standard Brownian motion we are required, in addition
to establishing its normality, to verify that the process {Bt } has independent increments.
Alternatively, it suffices to demonstrate that

E[exBt +y(BT −Bt )] = E[exBt ]E[ey(BT −Bt )] (193)

for any nonzero constants x, y. Using the definition for {Bt } and the tower property of
conditional expectation we can write

E[exBt +y(BT −Bt )] = E[e(x−y)ξt +yξT e−(xσ t+yσ(T −t))H∞ ]

= E
[
e(x−y)ξt +yξT E

[
e−(xσ t+yσ(T −t))H∞

∣∣FW
T

]]
. (194)

Once again from (156) we have

E
[
e−(xσ t+yσ(T −t))H∞

∣∣FW
T

] =
∑

i πi exp
(−xσ tEi − yσ(T − t)Ei + ξT Eiσ − 1

2E2
i σ

2T
)

∑
i πi exp

(
ξT Eiσ − 1

2E2
i σ

2T
)

(195)

for the inner expectation in (194). Substituting (195) into (194) and noting the fact that the
denominator in the expectation is the change-of-measure density �T we deduce, after some
rearrangement of terms, that

E[exBt +y(BT −Bt )] =
∑

i

πi exp

(
−xσ tEi − yσ(T − t)Ei − 1

2
E2

i σ
2T

)
EQ[e(x−y)ξt +(y+Eiσ)ξT ]

= exp

(
1

2
x2t +

1

2
y2(T − t)

)
. (196)

Here, we have made use of the Gaussian property

EQ[eaξt +bξT ] = exp
(

1
2 EQ[(aξt + bξT )2]

)
= exp

(
1
2 (a2 + 2ab)t + 1

2b2T
)

(197)

satisfied by the random variables ξt and ξT in the Q-measure. The result of (196) establishes
(193), and thus we conclude that the process {Bt } is normally distributed with zero mean and
variance t, and has independent increments. Therefore {Bt } is a standard Brownian motion.

�

16. Finite-time collapse model

In the foregoing sections we have investigated the properties of energy-based collapse models
for which state reduction is achieved asymptotically in time. That is to say, although for a
suitable choice of the parameter σ the state reaches the close vicinity of one of the energy
eigenstates virtually instantaneously, for a strict collapse to a state for which the energy
variance vanishes identically, we must take the limit t → ∞. There are circumstances,
however, in which it might be preferable to formulate a model that achieves strict collapse
in finite time duration. An example for such a model has been proposed recently [13]. In
what follows we shall apply the methodologies developed above to work out the properties of
finite-time collapse models.

The model that we consider here, which gives rise to a finite-time collapse, is given by
the following stochastic equation:

d|ψt 〉 = −iĤ |ψt 〉 dt − 1

8

(
σT

T − t

)2

(Ĥ − Ht)
2|ψt 〉 dt +

1

2

σT

T − t
(Ĥ − Ht)|ψt 〉 dWt. (198)
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We deduce immediately from the discussion in section 7 that the dynamical law (198) preserves
the norm 〈ψt |ψt 〉 of the state and that the associated energy process {Ht } is a martingale. In
particular, a short calculation making use of the Ito calculus shows that the energy process
satisfies

dHt = σtVt dWt, (199)

where we have defined, for convenience, the deterministic function {σt } by

σt = σT

T − t
, (200)

and {Vt } is the associated variance process. Note that (198) can be obtained from (3) by the
substitution σ → σt . Thus (198) contains two freely specifiable parameters, namely, σ and T.
The latter will be identified with the time at which the collapse is completed. More generally,
we may regard the collapse time T as a random variable having some density p(T ) defined
on the positive real line. Then the collapse time T itself becomes random; the analysis of this
case will be pursued elsewhere. Here, we shall treat T as a fixed parameter.

In order to solve (198), we shall make an ansatz analogous to the one introduced in (130).
Now from the point of view of filtering theory, the collapse of the state in the model (3) takes
place only asymptotically because the ‘noise-to-signal’ ratio, whose magnitude is of order√

t/t , vanishes only asymptotically as t → ∞. Therefore, in order to achieve a finite-time
collapse we consider the use of a Brownian bridge as the source for the noise. A Brownian
bridge with duration T can be regarded as a standard Brownian motion constrained to take
value zero at time t = 0 and also at time t = T . By using a Brownian bridge as the source for
the noise, the value of the unknown random variable H will be revealed in finite time T, since
the contribution of noise vanishes at that time. Specifically, the magnitude of noise-to-signal
ratio is given by

√
(T − t)/tT , which vanishes as t → T . It remains to be shown that the

solution of such a filtering problem corresponds to the solution of a finite-time collapse model
(198). In what follows we shall demonstrate that this is the case.

We thus consider the information process {ξt }0�t�T defined in this case by

ξt = σ tH + Bt − t

T
BT , (201)

where σ is a constant, {Bt } is a standard Brownian motion, and H is a discrete random variable
taking the values {Ei} with probability {πi}. It is evident from definition that ξ0 = 0 and that
ξt/σ t = H . The process {βt }0�t�T defined by the combination

βt = Bt − t

T
BT (202)

is a standard Brownian bridge on the interval t ∈ [0, T ] satisfying β0 = 0 and βT = 0. We
assume that H and {βt } are independent. It should be evident from the definition (202) that a
Brownian bridge is normally distributed with mean E[βt ] = 0 and covariance

Cov[βs, βt ] = E

[
BsBt − 1

T
(sBt + tBs)BT +

1

T 2
stB2

T

]

= s

(
1 − t

T

)
(203)

for s � t . In deriving (203) we have made use of the independent increments property satisfied
by {Bt } to deduce that E[BsBt ] = E[Bs(Bt − Bs + Bs)] = s. The Brownian bridge, on the
other hand, does not possess independent increments.

Our objective now, as before, is to determine the best estimate for the variable H given the
information concerning the trajectory {ξu}0�u�t of the process {ξu} from time u = 0 to time
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u = t � T . In particular, the conclusion of proposition 7 remains valid in the present context:
that is to say, the estimate that minimizes the quadratic error is given by the conditional
expectation E

[
H
∣∣F ξ

t

]
. To calculate this conditional expectation we shall make use of the

following key result:

Lemma 3. Let ξt = σ tH + βt , where H is a random variable taking the values
Ei (i = 1, 2, . . . , N) with probability P(H = Ei) = πi , σ is a constant and {βt } is a
standard P-Brownian bridge on the interval t ∈ [0, T ], independent of H. Then {ξt }0�t�T is
a Markov process.

Proof of lemma 3. To show that {ξt } is Markovian, we must show that

P
(
ξt � x

∣∣F ξ
s

) = P(ξt � x|ξs) (204)

for all x ∈ R and all s, t such that 0 � s � t � T . It will suffice to verify that

P
(
ξt � x

∣∣ξs, ξs1 , ξs2 , . . . , ξsk

) = P(ξt � x|ξs) (205)

for any times t, s, s1, s2, . . . , sk such that T � t > s > s1 > s2 > · · · > sk > 0. We remark
that for any times t, s, s1 satisfying t > s > s1 the random variables βt and βs/s − βs1

/
s1

have vanishing covariance, and thus are independent. More generally, for s > s1 > s2 > s3

the random variables βs/s − βs1

/
s1 and βs2

/
s2 − βs3

/
s3 are independent. We note that

ξs/s − ξs1

/
s1 = βs/s − βs1

/
s1. It follows that

P
(
ξt � x|ξs, ξs1 , ξs2 , . . . , ξsk

) = P

(
ξt � x

∣∣∣∣ξs,
ξs

s
− ξs1

s1
,
ξs1

s1
− ξs2

s2
, . . . ,

ξsk−1

sk−1
− ξsk

sk

)

= P

(
ξt � x

∣∣∣∣ξs,
βs

s
− βs1

s1
,
βs1

s1
− βs2

s2
, . . . ,

βsk−1

sk−1
− βsk

sk

)
. (206)

Since ξs and ξt are independent of βs/s − βs1

/
s1, βs1

/
s1 − βs2

/
s2, . . ., βsk−1

/
sk−1 − βsk

/
sk ,

the desired result follows immediately. �

Because {ξt } is a Markov process, the conditional expectation E
[
H
∣∣F ξ

t

]
simplifies to

Ht = E[H |ξt ] so that we only need to specify the value ξt of the process at time t and not the
entire trajectory {ξu}0�u�t . We shall first establish the following result.

Proposition 11. Let H be a random variable taking the value Ei with probability
πi (i = 1, 2, . . . , n), and set ξt = σ tH + Bt − (t/T )BT for 0 � t < T , where σ is a
constant and the Brownian motion {Bt } is independent of H. Then the conditional expectation
Ht = E

[
H
∣∣F ξ

t

]
is given by

Ht =
∑

i πiEi exp
( σξtEiT − 1

2 σ 2E2
i tT

T −t

)
∑

i πi exp
( σξtEiT − 1

2 σ 2E2
i tT

T −t

) . (207)

Proof. The conditional expectation Ht = E[H |ξt ] can be expressed in terms of the conditional
probability as follows:

Ht =
∑

i

EiP(H = Ei |ξt ). (208)

To determine the conditional probability P(H = Ei |ξ) we note that according to the Bayes
formula that we can write

P(H = Ei |ξt ) = πiρ(ξt |H = Ei)∑
i πiρ(ξt |H = Ei)

, (209)
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where

ρ(ξt |H = Ei) =
√

T
2πt(T −t)

exp

(
− (ξt − σ tEi)

2T

2t (T − t)

)
. (210)

Expression (210) follows from the fact that conditional on H = Ei the variable ξt in (201) is
normally distributed with mean σ tEi and variance

E[(Bt − (t/T )BT )2] = t (T − t)/T . (211)

Putting these together, we deduce (207) after some rearrangements of terms. �

From the expression (207) we can infer directly the property that Ht → Ek as t → T ,
provided we set H = Ek . Writing Hk

t for the conditional energy process {Ht(H = Ek)},
ωij = Ei − Ej for the difference of energy eigenvalues, and substituting ξt = ξk

t = σ tEk + βt

into (207), we obtain

Hk
t =

∑
i πiEi exp

( σξk
t EiT − 1

2 σ 2E2
i tT

T −t

)
∑

i πi exp
( σξk

t EiT − 1
2 σ 2E2

i tT

T −t

)
= πkEk +

∑
i =k exp

( σT ωikβt− 1
2 σ 2ω2

ik tT

T −t

)
πk +

∑
i =k exp

( σT ωikβt− 1
2 σ 2ω2

ik tT

T −t

) . (212)

Observe that for each i the numerator in the exponent in (212) approaches a strictly negative
number − 1

2σ 2ω2
iktT . Hence, as t → T all the exponential terms are rapidly suppressed and

we are left with the desired outcome: Hk
T = Ek .

17. Innovation process for finite-time collapse model

Let us analyse the properties of the process {Ht } in (207) more closely. By taking the stochastic
differential of (207) we obtain

dHt = σtVt

[
1

T − t
(ξt − σT Ht) dt + dξt

]
, (213)

where Vt = E
[
H 2

∣∣F ξ
t

] − H 2
t is the conditional variance of the random variable H. Clearly,

there exists a choice of a process {Wt } defined in terms of {Ht } and {ξt } such that the drift term
in the dynamical equation (213) can be removed, when expressed in terms of {Wt }. It remains
to be shown that such a process is a Brownian motion that derives the dynamics of the state
(198). We shall proceed by verifying the following result.

Proposition 12. The process {Wt } defined by

Wt =
∫ t

0

1

T − s
(ξs − σT Hs) ds + ξt (214)

is an
{
F ξ

t

}
-Brownian motion.

Proof. First we note that the tower property of conditional expectation shows

E
[
Bt

∣∣F ξ
s

] = E
[
E
[
Bt

∣∣FB
t ,H

]∣∣F ξ
s

] = Es[Bs], (215)

where we write Es[−] = E
[−∣∣F ξ

s

]
. It follows from (201) that ξt = Et [ξt ], and hence that ξt

is given by

ξt = σ tHt +

(
1 − t

T

)
Et [Bt ]. (216)
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We now proceed to establish that {Wt } as defined by (214) is an
{
F ξ

t

}
-martingale. For t � u,

we have

Et [Wu] = Et [ξu] + Et

[∫ u

0

1

T − s
(ξs − σT Hs) ds

]

= Et [ξu] +
∫ t

0

1

T − s
(ξs − σT Hs) ds +

∫ u

t

1

T − s
(Et [ξs] − σT Ht) ds. (217)

Here we have used the fact that {ξt } and {Ht } are
{
F ξ

t

}
-adapted and that Et [Hs] = Ht for

t � s. Therefore,

Et [Wu] = Et

[
σuH + Bu − u

T
BT

]
+ Wt − ξt

+
∫ u

t

1

T − s
Et

[
σsH + Bs − s

T
BT

]
ds − σT Ht

∫ u

t

1

T − s
ds

= σuHt + Wt − ξt + σHt

∫ u

t

s

T − s
ds − σT Ht

∫ u

t

1

T − s
ds

+ Et [Bt ]

(
1 − u

T
+
∫ u

t

1

T − s

(
1 − s

T

)
ds

)

= Wt − ξt + σ tHt + Et [Bt ]

(
1 − t

T

)
= Wt, (218)

where in the final step we have made use of the relation (216). This establishes the martingale
property satisfied by {Wt }. On the other hand, (214) implies (dWt)

2 = (dξt )
2, whereas (201)

implies (dξt )
2 = dt . It follows that (dWt)

2 = dt , and this establishes the assertion that {Wt }
is an

{
F ξ

t

}
-Brownian motion. �

We remark that by substituting (214) into (213) we obtain the dynamics

dHt = σtVt dWt (219)

for the process {Ht } given in (207), which shows that {Ht } is a martingale. On the other hand,
by taking the stochastic differential of the energy process Ht = 〈ψt |Ĥ |ψt 〉/〈ψt |ψt 〉 using
(198) we have obtained (199). To show that (207) is indeed the energy process associated with
the dynamics (198) we must demonstrate that the two processes labelled by {Wt } are identical.
In particular, we have the following result.

Proposition 13. The innovation process {Wt } defined in (214) is the Brownian motion that
derives the dynamics of the wavefunction in (198).

Proof. The stochastic differential equation (198) can be given by the following integral
representation:

|ψt 〉 = exp

(
−iĤ t − 1

4

∫ t

0
σ 2

s (Ĥ − Hs)
2 ds +

1

2

∫ t

0
σs(Ĥ − Hs) dWs

)
|ψ0〉. (220)

This can be expressed more concisely as |ψt 〉 = Ût R̂t |ψ0〉, where

Ût = exp(−iĤ t) (221)

is the usual unitary evolution operator and

R̂t = exp

(
1

2

∫ t

0
σs(Ĥ − Hs) dWs − 1

4

∫ t

0
σ 2

s (Ĥ − Hs)
2 ds

)
(222)
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is the ‘reduction’ operator. The square of R̂t , which we denote by M̂t , is an operator-valued
martingale, given by

M̂t = exp

(∫ t

0
σs(Ĥ − Hs) dWs − 1

2

∫ t

0
σ 2

s (Ĥ − Hs)
2 ds

)

= exp
(∫ t

0 Ĥσs(dWs + σsHs ds) − 1
2

∫ t

0 σ 2
s Ĥ 2 ds

)
exp

(∫ t

0 Hsσs(dWs + σsHs ds) − 1
2

∫ t

0 σ 2
s H 2

s ds
) . (223)

Let us now introduce a modified Brownian motion {W ∗
t } according to

W ∗
t = Wt +

∫ t

0
σsHs ds, (224)

so dW ∗
t = dWt +σtHt dt . While {W ∗

t } is a drifted Brownian motion in the probability measure
P, we can construct another probability measure Q in which the process {W ∗

t } becomes a
standard Brownian motion. Then, because Ĥ is constant in time, we can write M̂t in the
simple form

M̂t = 1

�t

exp

(
Ĥ

∫ t

0
σs dW ∗

s − 1

2
Ĥ 2

∫ t

0
σ 2

s ds

)
, (225)

where

�t = exp

(∫ t

0
σsHs dW ∗

s − 1

2

∫ t

0
σ 2

s H 2
s ds

)
(226)

is a positive martingale process.
Recall that (198) preserves the norm of |ψ0〉. Therefore, if we assume initially that

〈ψ0|ψ0〉 = 1, then it follows that 〈ψ0|M̂t |ψ0〉 = 1 for all t. Thus, we deduce from (223) and
(224) that

�t = 〈ψ0| exp

(
Ĥ

∫ t

0
σs dW ∗

t − 1

2
Ĥ 2

∫ t

0
σ 2

s dt

)
|ψ0〉. (227)

As a consequence, we can write

M̂t = exp
(
Ĥ
∫ t

0 σs dW ∗
t − 1

2 Ĥ 2
∫ t

0 σ 2
s dt

)
〈ψ0| exp

(
Ĥ
∫ t

0 σs dW ∗
t − 1

2 Ĥ 2
∫ t

0 σ 2
s dt

)|ψ0〉
, (228)

which has the effect of isolating the dependence of M̂t on {Ht }. In particular, M̂t depends on
{Ht } entirely through the modified Brownian motion {W ∗

t }. The process {Ht } in turn is given
by Ht = 〈ψt |Ĥ |ψt 〉/〈ψt |ψt 〉, from which it follows that Ht = 〈ψ0|Ĥ M̂t |ψ0〉. Therefore, by
use of (228) we have

Ht = 〈ψ0|Ĥ exp
(
Ĥ
∫ t

0 σs dW ∗
s − 1

2 Ĥ 2
∫ t

0 σ 2
s ds

)|ψ0〉
〈ψ0| exp

(
Ĥ
∫ t

0 σs dW ∗
s − 1

2 Ĥ 2
∫ t

0 σ 2
s ds

)|ψ0〉
, (229)

which shows that Ht can be expressed in terms of {W ∗
t } and t. This is given by

Ht =
∑

i πiEi exp
(
Ei

∫ t

0 σs dW ∗
s − 1

2E2
i

∫ t

0 σ 2
s ds

)
∑

i πi exp
(
Ei

∫ t

0 σs dW ∗
s − 1

2E2
i

∫ t

0 σ 2
s ds

) , (230)

where πi denotes the initial probability that the eigenvalue attained is Ei .
Now if the process {Ht } obtained in (207) is the energy process (230), then from the

relation
∫ t

0 σ 2
s ds = σ 2tT /(T − t), we deduce, by comparison of (207) and (230), that

ξt = (T − t)

∫ t

0

1

T − s
dW ∗

s (231)
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must be satisfied. To show that (231) is satisfied, we remark first that the stochastic differential
of (214) is given by

dWt + σT
1

T − t
Ht dt = 1

T − t
ξt dt + dξt . (232)

On the other hand, the differential form of (224) is

dWt + σT
1

T − t
Ht dt = dW ∗

t . (233)

Therefore, by comparing (232) and (233) we deduce the relation

dξt = − 1

T − t
ξt dt + dW ∗

t . (234)

This, however, is the differential form of (231). It follows that the process {Ht } obtained
in (207) is the energy process (230) associated with the collapse model (198). In particular,
the process {Wt } defined in (214) is the Brownian motion that drives the dynamics of the
state (198). �

The above result also shows that the process {ξt } defined by (201) is itself a Brownian
bridge in the Q-measure. This follows from the integral representation (231) above, which
shows that in the Q-measure, under which {W ∗

t } is a standard Brownian motion, {ξt } is a
zero-mean Gaussian process with autocovariance given by

E[ξsξt ] = (T − s)(T − t)E

[∫ s

0

1

T − u
dW ∗

u

∫ t

0

1

T − v
dW ∗

v

]

= (T − s)(T − t)

{
E

[(∫ s

0

1

T − u
dW ∗

u

)2
]

+ E

[∫ s

0

1

T − u
dW ∗

u

∫ t

s

1

T − u
dW ∗

u

]}

= (T − s)(T − t)

{
E

[(∫ s

0

1

T − u
dW ∗

u

)2
]

+ E

[∫ s

0

1

T − u
dW ∗

u

]
E

[∫ t

s

1

T − u
dW ∗

u

]}

= s

(
1 − t

T

)
(235)

for s � t . Here, we have substituted the integral representation (231) into the right-hand side
of (235), applied the Wiener–Ito isometry, and used the independent increments property of
Brownian motion. We shall make use of this result to establish Proposition 14.

18. Reverse construction for finite-time collapse model

We have demonstrated in the previous section that the closed-form solution to the stochastic
equation (198) can be obtained by use of a nonlinear filtering methodology, in which we
have introduced a pair of independent random data H and {βt }. Conversely, starting from
the stochastic equation (198), we can derive the existence of such a pair of independent data.
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We let {Ht } be the energy process associated with the collapse process (198), and define the
process {ξt } in terms of the energy process {Ht } and the Brownian motion {Wt } according to

ξt = (T − t)

∫ t

0

1

T − s
(dWs + σsHs ds). (236)

Then we have the following:

Proposition 14. The random variables HT and βt = ξt − σ tHT are independent for all
t ∈ [0, T ]. Furthermore, the process {βt } is a Brownian bridge.

Proof. For the independence of the random variables HT and βt it suffices to verify that

E[exβt +yHT ] = E[exβt ]E[eyHT ] (237)

for arbitrary x, y. Using the tower property of conditional expectation we have

E[exβt +yHT ] = E[exξt E[e(y−σ tx)HT |ξt ]]. (238)

Let us consider the inner expectation E[e(y−σ tx)HT |ξt ]. Using expressions (209) and (210) for
the conditional probability distribution of the terminal energy HT , we deduce that

E[e(y−σ tx)HT |ξt ] = �−1
t

∑
i

πi e(y−σ tx)Ei exp

(
σξtEiT − 1

2σ 2E2
i tT

T − t

)
, (239)

where the process {�t } is defined in (226). Recall now that {�t } is the density process for
changing the measure from Q to P. As a consequence, we have

E[exξt E[e(y−σ tx)HT |ξt ]] = EQ

[
exξt

∑
i

πi e(y−σ tx)Ei exp

(
σξtEiT − 1

2σ 2E2
i tT

T − t

)]
. (240)

However, the process {ξt } appearing in (240) is a Brownian bridge under the Q-measure.
Therefore, the expectation in (240) can be computed by elementary methods and we deduce,
after some rearrangement of terms, that

E[exβt +yHT ] =
∑

i

πi eyEi e
t (T −t)

2T
x2

. (241)

Here, we have used the facts that if g is a zero-mean Gaussian random variable with variance
γ 2, then E[exg] = e

1
2 γ 2x2

, and that the variance of the Q-Brownian bridge {ξt } is t (T − t)/T .
This proves the independence of {βt } and HT . The result (241) also establishes that under P

the process {βt } is Gaussian and has mean zero and variance t (T − t)/T . To establish {βt }
is a Brownian bridge, we must show that for s � t the covariance of βs and βt is given by
s(T − t)/T . Alternatively, we can analyse the moment generating function E[exβs+yβt ]. We
thus proceed as follows. First, using the tower property of conditional expectation we have

E[exβs+yβt ] = E[exξs+yξt−σ(xs+yt)HT ]

= E[exξs+yξt E[e−σ(xs+yt)HT |ξt ]]

= E

[
exξs+yξt �−1

t

∑
i

πi e−σ(xs+yt)Ei exp

(
σξtEiT − 1

2σ 2E2
i tT

T − t

)]

=
∑

i

πi exp

(
−σ(xs + yt)Ei − tT

2(T − t)
σ 2E2

i

)

× EQ

[
exp

(
xξs +

(
y +

σT Ei

T − t

)
ξt

)]
. (242)
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Now we note that

EQ

[
exp

(
xξs +

(
y +

σT Ei

T − t

)
ξt

)]
= exp

{
1

2
EQ

[(
xξs +

(
y +

σEiT

T − t

)
ξt

)2
]}

= exp

{
1

2

(
x2s

(
1 − s

T

)
+

(
y +

σEiT

T − t

)2

t

(
1 − t

T

)

+ 2x

(
y +

σEiT

T − t

)
s

(
1 − t

T

))}
, (243)

from which we observe that the dependence on the energy eigenvalues {Ei} in the summand
of (242) drops out. As a consequence, we obtain

E[exβs+yβt ] = exp

{
1

2

(
x2s

(
1 − s

T

)
+ y2t

(
1 − t

T

)
+ 2xys

(
1 − t

T

))}
. (244)

It follows that the covariance of βs and βt for s � t is given by

∂2

∂x∂y
E[exβs+yβt ]

∣∣∣∣
x=y=0

= s

(
1 − t

T

)
. (245)

This establishes the assertion that {βt } is a P-Brownian bridge. �

19. Time-change and Brownian bridge

The asymptotic collapse model and the finite-time collapse model that have been investigated
in this paper are in fact related by an elementary time-change. In this section we shall
demonstrate how a finite-time collapse model can be seen to ‘emerge’ from an asymptotic
collapse model, and vice verse, by the use of time-change techniques applied to Brownian
motion.

We begin by noting the following property of Brownian motion. Suppose f (s) > 0 is a
continuous monotonic function over s ∈ [0, T ] such that∫ t

0
f 2(s) ds → ∞ (246)

as t → T , where 0 < T � ∞. Let τ(t) be given by the solution of the equation∫ τ(t)

0
f 2(s) ds = t, (247)

or equivalently,

f 2(τ (t)) =
(

dτ

dt

)−1

, (248)

and let {Bt } be a standard Brownian motion. Then the process {Xt } defined by

Xt =
∫ τ(t)

0
f (s) dBs (249)

is a standard Brownian motion. To verify that {Xt } is a Brownian motion it suffices to show
that the covariance of Xs and Xt for s � t is given by s. This follows on account of the fact
that since τ(t) is deterministic, (249) shows that {Xt } is Gaussian with mean zero. Using Ito’s
lemma we then find that the covariance is given by

E[XsXt ] =
∫ τ(s)

0
f 2(s) ds (250)
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for s � t . Therefore, from the defining relation (247) we conclude that the covariance of Xs

and Xt is indeed s. As an example, consider the function

f (s) = T

T − s
. (251)

Clearly f (s) is monotonic and satisfies f (s) → ∞ as s → T . Furthermore, we have∫ τ

0
f 2(s) ds = τT

T − τ
. (252)

Substitution of (251) into (247) shows that the relevant time-change in this example is

τ(t) = tT

t + T
. (253)

As a consequence, we find that the process {B̃t } defined by

B̃t =
∫ tT

t+T

0

T

T − s
dBs (254)

is a standard Brownian motion. From (253), we find that τ(0) = 0 and that τ(t) → T as
t → ∞. Therefore, the time-change (253) has the effect of ‘slowing down’ the process.

We can consider, conversely, a time-change that has the effect of ‘speeding up’ the
process. For this we require the following variant of the previous result. Suppose f (s) > 0 is
a continuous monotonic function over s ∈ [0,∞] such that∫ t

0
f 2(s) ds → T (255)

as t → ∞, where 0 < T < ∞. Let τ(t) be given by the solution of equation (247), and let
{Bt } be a standard Brownian motion. Then the process {Yt } defined by

Yt =
∫ τ(t)

0
f (s) dBs (256)

is a standard Brownian motion. This result can be verified by studying the covariance of Ys

and Yt . As an example we consider the function

f (s) = T

s + T
, (257)

which clearly satisfies the condition (255). It follows that the relevant time-change in this
example is

τ(t) = tT

T − t
, (258)

or equivalently,

t = τT

τ + T
, (259)

and that the process {Yt } defined by

Yt =
∫ tT

T −t

0

T

s + T
dBs (260)

is a standard Brownian motion. We find from (258) that τ(0) = 0 and that τ(t) → ∞ as
t → T . Therefore, in this example the time-change has the effect of speeding up the clock
variable τ(t).
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With these results at hand we now proceed to establish the relationship between the
finite-time and the asymptotic collapse models studied in this paper. To begin we recall the
definition

ξt = σ tH + βt (261)

for the information process {ξt } in the finite-time collapse model, and the fact that the Brownian
bridge process {βt } admits the integral representation

βt = (T − t)

∫ t

0

1

T − s
dBs. (262)

Next, we consider the time-change given by (258) and define {ητ } by

ητ = 1

T − t
ξt . (263)

Then substituting (261) here and using the integral representation (262) we obtain

ητ = σHt

T − t
+

βt

T − t
= σHτ +

∫ t

0

1

T − s
dBs, (264)

on account of the integral representation (262). However, recalling the relations (259) and
(254), we deduce that {ητ } can be expressed in the form

ητ = σHτ + B̃τ . (265)

This defines a ‘standard’ filtering problem associated with the asymptotic collapse model, if
we regard τ as the time variable. In particular, the best estimate for H, given the observation{
Fη

τ

}
, is determined by the conditional expectation

H̃ τ = E[H |ητ ]. (266)

Clearly we have the relation H̃ τ = Ht(τ). Furthermore, we have

dH̃ τ = σVτ dW̃τ , (267)

where

W̃τ = ητ − σ

∫ τ

0
H̃ s ds (268)

is a standard Brownian motion. From (263) and (268) we deduce that

d

(
1

T − t
ξt

)
= σH̃ τ dτ + dW̃τ = σHt

1

(T − t)2
dt +

1

T − t
dWt, (269)

where

W̃ tT
T −t

=
∫ t

0

1

T − s
dWs. (270)

Expanding the left-hand side of (269) we deduce

dξt +
1

T − t
(ξt − σHt) dt = dWt, (271)

which, if integrated, reduces to the relation (214). In this manner we find that by taking the
asymptotic collapse model (265) and applying the time-change according to (258), which has
the effect of ‘speeding up’ the process, we recover the finite-time collapse model (261).

Conversely, given the model

ξt = σ tH + B̃t (272)
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that solves the asymptotic collapse model, we may consider the time-change given by (253)
and define

ητ = T

t + T
ξt = στH +

T

t + T
B̃t . (273)

However, because of the relations t = τT /(T − τ) and (254) we deduce that

T

t + T
B̃t = (T − τ)

∫ τ

0

1

T − s
dBs, (274)

which is the integral representation for the Brownian bridge process {βτ } with respect to the
time variable τ . As a consequence, we obtain

ητ = στH + βτ , (275)

and we thus recover the model that solves the finite-time collapse process. We thus obtain the
following conclusion:

Proposition 15. The finite-time collapse model (198) can be obtained from the asymptotic
collapse model (3) by means of the time-change defined in (258). The reverse transformation
is obtained by the time-change defined in (253).

20. Discussion

The result of Proposition 9 demonstrates that given the dynamical equation (3) for the quantum
state and the associated energy process (4) we can deduce the existence of the asymptotic
random variable H∞ and an independent noise process {Bt }. The variable H∞ carries the
interpretation of a hidden variable in the stochastic quantum theory. More precisely, because
H∞ is

{
FW

∞
}
-measurable, its value can only be determined with certainty after the collapse

has taken place. The ‘quantum noise’ process {Bt } represents the ‘disinformation’ that hides
H∞ before the completion of the collapse process.

Whether the energy-based reduction models considered here suffice to describe
measurements and relaxation phenomena in general in nonrelativistic quantum mechanics
remains an open issue. There are attempts, for example, to formulate a spontaneous collapse
of the wave packet in a localized region in space (see, e.g., [8], for a recent work in this
area). However, localization of a particle in a small region in space typically requires large
energy. Indeed, in a generic measurement-theoretic context one requires an infinite amount of
energy to confine a particle in a finite region [9], and hence it may be unphysical to speak of a
true ‘position measurement’. Quantities such as the position or momentum of a particle thus
represent what an experimentalist can estimate from appropriate energy measurements.

This observation is consistent with the point of view put forward by Wiener [31] that
“under the quantum mechanics, it is impossible to obtain any information giving the position
or momentum of a particle, much less the two together, without a positive effect on the energy of
the particle examined . . .Thus all coupling is strictly a coupling involving energy. . .” The basic
idea is that, in order to measure a physical quantity of a system the measurement apparatus
must interact with the system, and this is achieved in the form of interchange of particles
(typically photons or phonons). When these particles interact with the measurement apparatus
they create some form of excitation which then allows the device to estimate quantities of
interest. In this regard, we can take the point of view that the energy-based models are of
fundamental importance in describing random phenomena involving quantum systems.



876 D C Brody and L P Hughston

Acknowledgments

DCB acknowledges support from The Royal Society. LPH acknowledges the hospitality of
the Institute for Advanced Study, Princeton, where part of this work was carried out. We thank
S L Adler, I C Constantinou, J Dear and P Pearle for useful comments and discussions.

References

[1] Adler S L 2002 Environmental influence on the measurement process in stochastic reduction models J. Phys.
A: Math. Gen. 35 841

[2] Adler S L 2003 Why decoherence has not solved the measurement problem: a response to P W Anderson Stud.
Hist. Phil. Mod. Phys. 34 135 (see also [6])

[3] Adler S L 2004 Quantum Theory as an Emergent phenomenon (Cambridge: Cambridge University Press)
[4] Adler S L, Brody D C, Brun T A and Hughston L P 2001 Martingale models for quantum state reduction

J. Phys. A: Math. Gen. 34 8795
[5] Adler S L and Horwitz L P 2000 Structure and properties of Hughston’s stochastic extension of the Schrödinger

equation J. Math. Phys. 41 2485
[6] Anderson P W 2001 Science: a ‘Dappled World’ or a ‘Seamless Web’? Stud. Hist. Phil. Mod. Phys. 32 487
[7] Bassi A and Ghirardi G C 2003 Dynamical reduction models Phys. Rep. 379 257
[8] Bassi A 2005 Collapse models: analysis of the free particle dynamics J. Phys. A: Math. Gen. 38 3173
[9] Bender C M, Brody D C and Meister B K 2005 Unusual quantum states: nonlocality, entropy, Maxwell’s

daemon, and fractals Proc. R. Soc. A 461 733
[10] Brody D C and Hughston L P 2002 Stochastic reduction in nonlinear quantum mechanics Proc. R. Soc.

A 458 1117
[11] Brody D C and Hughston L P 2002 Efficient simulation of quantum state reduction J. Math. Phys. 43 5254
[12] Brody D C, Hughston L P and Syroka J 2003 Relaxation of quantum states under energy perturbations Proc. R.

Soc. A 459 2297
[13] Brody D C and Hughston L P 2005 Finite-time stochastic reduction models J. Math. Phys. 46 082101
[14] Deutsch D 1983 Uncertainty in quantum measurements Phys. Rev. Lett. 50 631
[15] Diosi L 1988 Continuous quantum measurement and Ito formalism Phys. Lett. A 129 419
[16] Gisin N 1989 Stochastic quantum dynamics and relativity Helv. Phys. Acta 62 363
[17] Ghirardi G C, Pearle P and Rimini A 1990 Markov processes in Hilbert space and continuous spontaneous

localization of systems of identical particles Phys. Rev. A 42 78
[18] Hughston L P 1996 Geometry of stochastic state vector reduction Proc. R. Soc. A 452 953
[19] Isham C J 1995 Lectures on Quantum Theory (London: Imperial College Press)
[20] Karatzas I and Shreve S E 1997 Brownian Motion and Stochastic Calculus (Berlin: Springer)
[21] Lipster R S and Shiryaev A N 2000 Statistics of Random Processes vols I and II, 2nd edn (Berlin: Springer)
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